The minimum number of Hamilton cycles in a Hamiltonian threshold graph of a prescribed order
We prove that the minimum number of Hamilton cycles in a Hamiltonian threshold graph of order n is 2 ⌊ ( n − 3 ) ∕ 2 ⌋ and this minimum number is attained uniquely by the graph with degree sequence n − 1 , n − 1 , n − 2 , … , ⌈ n ∕ 2 ⌉ , ⌈ n ∕ 2 ⌉ , … , 3,2 of n − 2 distinct degrees. This graph is a...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2020-02, Vol.93 (2), p.222-229 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the minimum number of Hamilton cycles in a Hamiltonian threshold graph of order
n is
2
⌊
(
n
−
3
)
∕
2
⌋ and this minimum number is attained uniquely by the graph with degree sequence
n
−
1
,
n
−
1
,
n
−
2
,
…
,
⌈
n
∕
2
⌉
,
⌈
n
∕
2
⌉
,
…
,
3,2 of
n
−
2 distinct degrees. This graph is also the unique graph of minimum size among all Hamiltonian threshold graphs of order
n. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22483 |