Unravelling the March 1972 northwest Greenland windstorm with high‐resolution numerical simulations

Thule Air Base in northwest Greenland experienced an extreme windstorm during the night of 8/9 March 1972. The event is not among official WMO records because the anemometer broke after recording the highest gust of 93 m s−1. A recent study re‐examined the event based on coarse‐resolution reanalyses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2019-10, Vol.145 (725), p.3409-3431
Hauptverfasser: Tollinger, Mathias, Gohm, Alexander, Jonassen, Marius O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thule Air Base in northwest Greenland experienced an extreme windstorm during the night of 8/9 March 1972. The event is not among official WMO records because the anemometer broke after recording the highest gust of 93 m s−1. A recent study re‐examined the event based on coarse‐resolution reanalyses and observations which, however, did not fully resolve the proposed storm processes. This is the first study that uses high‐resolution numerical simulations to investigate the processes associated with this windstorm. A cold‐frontal inversion and strong flow across the mountain ridge upstream of Thule Air Base (associated with a passing low pressure system) are shown to be key factors for the severe downslope windstorm in the lee of the ridge. It is shown that trapped lee waves occurred during the initial phase of the storm, but did not contribute to the highest wind speeds as proposed in the previous study. It is confirmed that rotor circulations occurred which possibly contributed to the large wind variability and, hence, large differences between individual observation sites. However, no rotors were present at the time of the highest simulated wind speed. Instead, wave breaking above the lee slope is found to indirectly contribute to the wind maxima by facilitating Kelvin–Helmholtz instability at the top of the shooting flow that caused intense wind speed pulsations near the surface. In agreement with the previous study, a corner jet was simulated, however it was not responsible for the strong winds in the vicinity of the air base. Sensitivity experiments showed that the flow field was considerably influenced by the high topography downstream of the air base and that simulations with very thin or no sea ice cover over Baffin Bay resulted in a weaker frontal inversion and up to about 30% lower maximum wind speeds. In March 1972, Thule Air Base in northwest Greenland experienced an extreme downslope windstorm with observed gusts up to 93 m s−1. Trapped lee waves and rotors have been previously declared responsible for the severity of the storm. In this study, high‐resolution numerical simulations reveal that trapped lee waves and rotors indeed occurred, but were not responsible for the peak intensity. Instead, the highest gusts occurred during a period of wind pulsations resulting from Kelvin–Helmholtz instability, as illustrated in the figure.
ISSN:0035-9009
1477-870X
DOI:10.1002/qj.3627