A Discriminative Learned CNN Embedding for Remote Sensing Image Scene Classification

In this work, a discriminatively learned CNN embedding is proposed for remote sensing image scene classification. Our proposed siamese network simultaneously computes the classification loss function and the metric learning loss function of the two input images. Specifically, for the classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-12
Hauptverfasser: Wang, Wen, Du, Lijun, Gao, Yinxing, Su, Yanzhou, Wang, Feng, Cheng, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a discriminatively learned CNN embedding is proposed for remote sensing image scene classification. Our proposed siamese network simultaneously computes the classification loss function and the metric learning loss function of the two input images. Specifically, for the classification loss, we use the standard cross-entropy loss function to predict the classes of the images. For the metric learning loss, our siamese network learns to map the intra-class and inter-class input pairs to a feature space where intra-class inputs are close and inter-class inputs are separated by a margin. Concretely, for remote sensing image scene classification, we would like to map images from the same scene to feature vectors that are close, and map images from different scenes to feature vectors that are widely separated. Experiments are conducted on three different remote sensing image datasets to evaluate the effectiveness of our proposed approach. The results demonstrate that the proposed method achieves an excellent classification performance.
ISSN:2331-8422