Solid-state nanopores towards single-molecule DNA sequencing

Nanopore DNA sequencing offers a new paradigm owing to its extensive potential for long-read, high-throughput detection of nucleotide modification and direct RNA sequencing. Given the remarkable advances in protein nanopore sequencing technology, there is still a strong enthusiasm in exploring alter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of human genetics 2020-01, Vol.65 (1), p.69-77
Hauptverfasser: Goto, Yusuke, Akahori, Rena, Yanagi, Itaru, Takeda, Ken-Ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanopore DNA sequencing offers a new paradigm owing to its extensive potential for long-read, high-throughput detection of nucleotide modification and direct RNA sequencing. Given the remarkable advances in protein nanopore sequencing technology, there is still a strong enthusiasm in exploring alternative nanopore-sequencing techniques, particularly those based on a solid-state nanopore using a semiconductor material. Since solid-state nanopores provide superior material robustness and large-scale integrability with on-chip electronics, they have the potential to surpass the limitations of their biological counterparts. However, there are key technical challenges to be addressed: the creation of an ultrasmall nanopore, fabrication of an ultrathin membrane, control of the ultrafast DNA speed and detection of four nucleotides. Extensive research efforts have been devoted to resolving these issues over the past two decades. In this review, we briefly introduce recent updates regarding solid-state nanopore technologies towards DNA sequencing. It can be envisioned that emerging technologies will offer a brand new future in DNA-sequencing technology.
ISSN:1434-5161
1435-232X
DOI:10.1038/s10038-019-0655-8