High-Gain Observer-Based Neural Adaptive Feedback Linearizing Control of a Team of Wheeled Mobile Robots
This paper addresses the neural network (NN) output feedback formation tracking control of nonholonomic wheeled mobile robots (WMRs) with limited voltage input. A desired formation is achieved based on the leader–follower strategy utilizing hyperbolic tangent saturation functions to reduce the risk...
Gespeichert in:
Veröffentlicht in: | Robotica 2020-01, Vol.38 (1), p.69-87 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the neural network (NN) output feedback formation tracking control of nonholonomic wheeled mobile robots (WMRs) with limited voltage input. A desired formation is achieved based on the leader–follower strategy utilizing hyperbolic tangent saturation functions to reduce the risk of actuator saturation. The controller is developed by incorporating the high-gain observer and radial basis function (RBF) NNs using the inverse dynamics control technique. The high-gain observer is introduced to estimate velocities of the followers. The RBF NN preserves the robustness of the proposed controller against uncertain nonlinearities. The adaptive laws are also combined by a robust control term to estimate the weights of RBF NN, approximation errors, and bounds of unknown time-variant environmental disturbances. A Lyapunov-based stability analysis proves that all signals of the closed-loop system are bounded, and tracking errors are uniformly ultimately bounded. Finally, some simulations are carried out to show the effectiveness of the proposed controller for a number of WMRs. |
---|---|
ISSN: | 0263-5747 1469-8668 |
DOI: | 10.1017/S026357471900047X |