Distance-based Global Descriptors for Multi-view Object Recognition
The paper reports on a new multi-view algorithm that combines information from multiple images of a single target object, captured at different distances, to determine the identity of an object. Due to the use of global feature descriptors, the method does not involve image segmentation. The perform...
Gespeichert in:
Veröffentlicht in: | Robotica 2020-01, Vol.38 (1), p.106-117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 1 |
container_start_page | 106 |
container_title | Robotica |
container_volume | 38 |
creator | Kannappan, Prasanna Tanner, Herbert G. |
description | The paper reports on a new multi-view algorithm that combines information from multiple images of a single target object, captured at different distances, to determine the identity of an object. Due to the use of global feature descriptors, the method does not involve image segmentation. The performance of the algorithm has been evaluated on a binary classification problem for a data set consisting of a series of underwater images. |
doi_str_mv | 10.1017/S0263574719000493 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2320906668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320906668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-f135053f89755085c20f4ffe931d5dd8a72770c125075b9aa1eb1153a75424e63</originalsourceid><addsrcrecordid>eNplkE1LAzEYhIMoWKs_wNuC5-j75mOzOUqrVagU_Dgv2WwiKeumJqniv7el3jzNYR5mmCHkEuEaAdXNC7CaSyUUagAQmh-RCYpa06aum2My2dt075-Ss5zXAMhRqAmZzUMuZrSOdia7vloMsTNDNXfZprApMeXKx1Q9bYcS6Fdw39WqWztbqmdn4_sYSojjOTnxZsju4k-n5O3-7nX2QJerxePsdkktU7xQj1yC5L7RSkpopGXghfdOc-xl3zdGMaXAIpOgZKeNQdchSm6UFEy4mk_J1SF3k-Ln1uXSruM2jbvKlnEGGurd1h2FB8qmmHNyvt2k8GHST4vQ7r9q_33FfwHY1Voi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320906668</pqid></control><display><type>article</type><title>Distance-based Global Descriptors for Multi-view Object Recognition</title><source>Cambridge University Press Journals Complete</source><creator>Kannappan, Prasanna ; Tanner, Herbert G.</creator><creatorcontrib>Kannappan, Prasanna ; Tanner, Herbert G.</creatorcontrib><description>The paper reports on a new multi-view algorithm that combines information from multiple images of a single target object, captured at different distances, to determine the identity of an object. Due to the use of global feature descriptors, the method does not involve image segmentation. The performance of the algorithm has been evaluated on a binary classification problem for a data set consisting of a series of underwater images.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574719000493</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Algorithms ; Image segmentation ; Object recognition</subject><ispartof>Robotica, 2020-01, Vol.38 (1), p.106-117</ispartof><rights>Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-f135053f89755085c20f4ffe931d5dd8a72770c125075b9aa1eb1153a75424e63</citedby><cites>FETCH-LOGICAL-c273t-f135053f89755085c20f4ffe931d5dd8a72770c125075b9aa1eb1153a75424e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kannappan, Prasanna</creatorcontrib><creatorcontrib>Tanner, Herbert G.</creatorcontrib><title>Distance-based Global Descriptors for Multi-view Object Recognition</title><title>Robotica</title><description>The paper reports on a new multi-view algorithm that combines information from multiple images of a single target object, captured at different distances, to determine the identity of an object. Due to the use of global feature descriptors, the method does not involve image segmentation. The performance of the algorithm has been evaluated on a binary classification problem for a data set consisting of a series of underwater images.</description><subject>Algorithms</subject><subject>Image segmentation</subject><subject>Object recognition</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkE1LAzEYhIMoWKs_wNuC5-j75mOzOUqrVagU_Dgv2WwiKeumJqniv7el3jzNYR5mmCHkEuEaAdXNC7CaSyUUagAQmh-RCYpa06aum2My2dt075-Ss5zXAMhRqAmZzUMuZrSOdia7vloMsTNDNXfZprApMeXKx1Q9bYcS6Fdw39WqWztbqmdn4_sYSojjOTnxZsju4k-n5O3-7nX2QJerxePsdkktU7xQj1yC5L7RSkpopGXghfdOc-xl3zdGMaXAIpOgZKeNQdchSm6UFEy4mk_J1SF3k-Ln1uXSruM2jbvKlnEGGurd1h2FB8qmmHNyvt2k8GHST4vQ7r9q_33FfwHY1Voi</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Kannappan, Prasanna</creator><creator>Tanner, Herbert G.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202001</creationdate><title>Distance-based Global Descriptors for Multi-view Object Recognition</title><author>Kannappan, Prasanna ; Tanner, Herbert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-f135053f89755085c20f4ffe931d5dd8a72770c125075b9aa1eb1153a75424e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Image segmentation</topic><topic>Object recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kannappan, Prasanna</creatorcontrib><creatorcontrib>Tanner, Herbert G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kannappan, Prasanna</au><au>Tanner, Herbert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance-based Global Descriptors for Multi-view Object Recognition</atitle><jtitle>Robotica</jtitle><date>2020-01</date><risdate>2020</risdate><volume>38</volume><issue>1</issue><spage>106</spage><epage>117</epage><pages>106-117</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>The paper reports on a new multi-view algorithm that combines information from multiple images of a single target object, captured at different distances, to determine the identity of an object. Due to the use of global feature descriptors, the method does not involve image segmentation. The performance of the algorithm has been evaluated on a binary classification problem for a data set consisting of a series of underwater images.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574719000493</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2020-01, Vol.38 (1), p.106-117 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_journals_2320906668 |
source | Cambridge University Press Journals Complete |
subjects | Algorithms Image segmentation Object recognition |
title | Distance-based Global Descriptors for Multi-view Object Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance-based%20Global%20Descriptors%20for%20Multi-view%20Object%20Recognition&rft.jtitle=Robotica&rft.au=Kannappan,%20Prasanna&rft.date=2020-01&rft.volume=38&rft.issue=1&rft.spage=106&rft.epage=117&rft.pages=106-117&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574719000493&rft_dat=%3Cproquest_cross%3E2320906668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320906668&rft_id=info:pmid/&rfr_iscdi=true |