The new idea for modification of the surface area of silicate glass
The paper presents a new and original method of modifying the surface layer of silicate glass by applying a coating produced from zirconium oxide–yttria-stabilized powder using the LPPS plasma method (low-pressure plasma spraying). This is a new approach and not found in both scientific literature a...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2019-12, Vol.138 (6), p.4223-4228 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents a new and original method of modifying the surface layer of silicate glass by applying a coating produced from zirconium oxide–yttria-stabilized powder using the LPPS plasma method (low-pressure plasma spraying). This is a new approach and not found in both scientific literature and known technological solutions. The results of the work indicate that it is possible to produce the coatings of yttrium-stabilized zirconium oxide (YSZ) on the glass substrate. These coatings were made using the LPPS PS-PVD method and consist of fine YSZ crystals with spheroidal morphology. This gradient coating (FGM) has a thickness controlled from LPPS of several dozen to hundreds of nanometers. It effectively modifies the properties of the glass by introducing favorable stresses on the surface and therefore increases its hardness and tensile strength. At the same time, thermal properties of the glass were determined, which allowed to determine the temperature of heating the glass substrate necessary for the proper implementation of the oxide coating production process on this substrate by the LPPS method. The glass parameters achieved in the work are very promising and comparable with the characteristics of the best glasses currently used in optoelectronics, especially in the displays of mobile phones and solar cells. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-019-08874-6 |