Local-measurement-based quantum state tomography via neural networks

Quantum state tomography is a daunting challenge of experimental quantum computing, even in moderate system size. One way to boost the efficiency of state tomography is via local measurements on reduced density matrices, but the reconstruction of the full state thereafter is hard. Here, we present a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2019-11, Vol.5 (1), p.1-8, Article 109
Hauptverfasser: Xin, Tao, Lu, Sirui, Cao, Ningping, Anikeeva, Galit, Lu, Dawei, Li, Jun, Long, Guilu, Zeng, Bei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum state tomography is a daunting challenge of experimental quantum computing, even in moderate system size. One way to boost the efficiency of state tomography is via local measurements on reduced density matrices, but the reconstruction of the full state thereafter is hard. Here, we present a machine-learning method to recover the ground states of k -local Hamiltonians from just the local information, where a fully connected neural network is built to fulfill the task with up to seven qubits. In particular, we test the neural network model with a practical dataset, that in a 4-qubit nuclear magnetic resonance system our method yields global states via the 2-local information with high accuracy. Our work paves the way towards scalable state tomography in large quantum systems.
ISSN:2056-6387
2056-6387
DOI:10.1038/s41534-019-0222-3