A local structure theorem for stable, J-simple semigroup biacts
We describe a class of semigroup biacts that is analogous to the class of completely simple semigroups, and prove a structure theorem for those biacts that is analogous to the Rees–Sushkevitch Theorem. Precisely, we describe stable, J -simple biacts in terms of wreath products, translations of compl...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2019-12, Vol.99 (3), p.724-753 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a class of semigroup biacts that is analogous to the class of completely simple semigroups, and prove a structure theorem for those biacts that is analogous to the Rees–Sushkevitch Theorem. Precisely, we describe stable,
J
-simple biacts in terms of wreath products, translations of completely simple semigroups, biacts over endomorphism monoids of free
G
-acts, tensor products and matrix biacts. Applications to coproducts and left acts are given. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-018-9986-6 |