A local structure theorem for stable, J-simple semigroup biacts

We describe a class of semigroup biacts that is analogous to the class of completely simple semigroups, and prove a structure theorem for those biacts that is analogous to the Rees–Sushkevitch Theorem. Precisely, we describe stable, J -simple biacts in terms of wreath products, translations of compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2019-12, Vol.99 (3), p.724-753
1. Verfasser: Mary, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a class of semigroup biacts that is analogous to the class of completely simple semigroups, and prove a structure theorem for those biacts that is analogous to the Rees–Sushkevitch Theorem. Precisely, we describe stable, J -simple biacts in terms of wreath products, translations of completely simple semigroups, biacts over endomorphism monoids of free G -acts, tensor products and matrix biacts. Applications to coproducts and left acts are given.
ISSN:0037-1912
1432-2137
DOI:10.1007/s00233-018-9986-6