Chains with Small Intervals in the Lattice of Binary Paths
We call an interval \([x,y]\) in a poset {\em small} if \(y\) is the join of some elements covering \(x\). In this paper, we study the chains of paths from a given arbitrary (binary) path \(P\) to the maximum path having only small intervals. More precisely, we obtain and use several formulas for th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We call an interval \([x,y]\) in a poset {\em small} if \(y\) is the join of some elements covering \(x\). In this paper, we study the chains of paths from a given arbitrary (binary) path \(P\) to the maximum path having only small intervals. More precisely, we obtain and use several formulas for the enumeration of chains having only small intervals and minimal length. For this, we introduce and study the notions of filling and degree of a path, giving in addition some related statistics. |
---|---|
ISSN: | 2331-8422 |