Characterizing the Difference Between Graph Classes Defined by Forbidden Pairs Including the Claw

For two graphs A and B , a graph G is called { A , B } -free if G contains neither A nor B as an induced subgraph. Let P n denote the path of order n . For nonnegative integers k , ℓ and m , let N k , ℓ , m be the graph obtained from K 3 and three vertex-disjoint paths P k + 1 , P ℓ + 1 , P m + 1 by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2019-11, Vol.35 (6), p.1459-1474
Hauptverfasser: Chen, Guantao, Furuya, Michitaka, Shan, Songling, Tsuchiya, Shoichi, Yang, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For two graphs A and B , a graph G is called { A , B } -free if G contains neither A nor B as an induced subgraph. Let P n denote the path of order n . For nonnegative integers k , ℓ and m , let N k , ℓ , m be the graph obtained from K 3 and three vertex-disjoint paths P k + 1 , P ℓ + 1 , P m + 1 by identifying each of the vertices of K 3 with one endvertex of one of the paths. Let Z k = N k , 0 , 0 and B k , ℓ = N k , ℓ , 0 . Bedrossian characterized all pairs { A , B } of connected graphs such that every 2-connected { A , B } -free graph is Hamiltonian. All pairs appearing in the characterization involve the claw ( K 1 , 3 ) and one of N 1 , 1 , 1 , P 6 and B 1 , 2 . In this paper, we characterize connected graphs that are (i)  { K 1 , 3 , Z 2 } -free but not B 1 , 1 -free, (ii)  { K 1 , 3 , B 1 , 1 } -free but not P 5 -free, or (iii)  { K 1 , 3 , B 1 , 2 } -free but not P 6 -free. The third result is closely related to Bedrossian’s characterization. Furthermore, we apply our characterizations to some forbidden pair problems.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-019-02108-0