Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates

Allowing for the existence of irrelevant covariates, we study the problem of estimating a conditional quantile function nonparametrically with mixed discrete and continuous data. We estimate the conditional quantile regression function using the check-function-based kernel method and suggest a data-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2019-10, Vol.212 (2), p.433-450
Hauptverfasser: Chen, Xirong, Li, Degui, Li, Qi, Li, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Allowing for the existence of irrelevant covariates, we study the problem of estimating a conditional quantile function nonparametrically with mixed discrete and continuous data. We estimate the conditional quantile regression function using the check-function-based kernel method and suggest a data-driven cross-validation (CV) approach to simultaneously determine the optimal smoothing parameters and remove the irrelevant covariates. When the number of covariates is large, we first use a screening method to remove the irrelevant covariates and then apply the CV criterion to those that survive the screening procedure. Simulations and an empirical application demonstrate the usefulness of the proposed methods.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2019.04.037