Factores de éxito para sistemas recomendadores de procesos de investigación
Having collected data from a survey of 70 research professors at a public university in Ecuador, the need for certain subjects to conduct research collaborative groups based on equivalent characteristics has been identified. [...]of the experimental process, 4 statistically significant variables wer...
Gespeichert in:
Veröffentlicht in: | RISTI : Revista Ibérica de Sistemas e Tecnologias de Informação 2019-08 (E22), p.375-385 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Having collected data from a survey of 70 research professors at a public university in Ecuador, the need for certain subjects to conduct research collaborative groups based on equivalent characteristics has been identified. [...]of the experimental process, 4 statistically significant variables were obtained, by means of the application of neural networks the level of prediction of success of the variables is determined with a result of 99.69%, it is concluded that the identified variables could be considered as functional user requirements with high probability of success. Keywords: Success factors; recommender system; neural networks; user requirement. 1.Introducción Con la aparición de la web 3.0 y el desarrollo de la inteligencia artificial han surgido varias aplicaciones que permiten el incremento del uso de la tecnología, la automatización de procesos, la conformación de redes de investigación multidisciplinaria, los sistemas recomendadores, entre otros. International Journal of Data Mining & Knowledge Management Process, 5(1), 01-14. https://doi.org/10.5121/ijdkp.2015.5101 Larrañaga, P., Inza, I., & Moujahid, A. (2015). |
---|---|
ISSN: | 1646-9895 |