Novel materials for high-efficiency III–V multi-junction solar cells
As a result of developing wide bandgap InGaP double hetero structure tunnel junction for sub-cell interconnection, InGaAs middle cell lattice-matched to Ge substrate, and InGaP-Ge heteroface structure bottom cell, we have demonstrated 38.9% efficiency at 489-suns AM1.5 with InGaP/InGaP/Ge 3-junction...
Gespeichert in:
Veröffentlicht in: | Solar energy 2008-02, Vol.82 (2), p.173-180 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a result of developing wide bandgap InGaP double hetero structure tunnel junction for sub-cell interconnection, InGaAs middle cell lattice-matched to Ge substrate, and InGaP-Ge heteroface structure bottom cell, we have demonstrated 38.9% efficiency at 489-suns AM1.5 with InGaP/InGaP/Ge 3-junction solar cells by in-house measurements. In addition, as a result of developing a non-imaging Fresnel lens as primary optics, a glass-rod kaleidoscope homogenizer as secondary optics and heat conductive concentrator solar cell modules, we have demonstrated 28.9% efficiency with 550-suns concentrator cell modules with an area of 5445
cm
2. In order to realize 40% and 50% efficiency, new approaches for novel materials and structures are being studied. We have obtained the following results: (1) improvements of lattice-mismatched InGaP/InGaAs/Ge 3-junction solar cell property as a result of dislocation density reduction by using thermal cycle annealing, (2) high quality (In)GaAsN material for 4- and 5-junction applications by chemical beam epitaxy, (3) 11.27% efficiency InGaAsN single-junction cells, (4) 18.27% efficiency InGaAs/GaAs potentially modulated quantum well cells, and (5) 7.65% efficiency InAs quantum dot cells. |
---|---|
ISSN: | 0038-092X 1471-1257 |
DOI: | 10.1016/j.solener.2007.06.011 |