Stitching an asymmetric texture with T13 × Z5 family symmetry

We propose T13 = Z13⋊Z3 as the underlying non-Abelian discrete family symmetry of the asymmetric texture presented in [M. H. Rahat, P. Ramond, and B. Xu, Phys. Rev. D 98, 055030 (2018).]. Its mod 13 arithmetic distinguishes each Yukawa matrix element of the texture. We construct a model of effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-10, Vol.100 (7), p.075008-1
Hauptverfasser: Pérez, M Jay, Rahat, Moinul Hossain, Ramond, Pierre, Stuart, Alexander J, Xu, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose T13 = Z13⋊Z3 as the underlying non-Abelian discrete family symmetry of the asymmetric texture presented in [M. H. Rahat, P. Ramond, and B. Xu, Phys. Rev. D 98, 055030 (2018).]. Its mod 13 arithmetic distinguishes each Yukawa matrix element of the texture. We construct a model of effective interactions that singles out the asymmetry and equates, without fine-tuning, the products of down-quark and charged-lepton masses at a GUT-like scale.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.100.075008