Stitching an asymmetric texture with T13 × Z5 family symmetry
We propose T13 = Z13⋊Z3 as the underlying non-Abelian discrete family symmetry of the asymmetric texture presented in [M. H. Rahat, P. Ramond, and B. Xu, Phys. Rev. D 98, 055030 (2018).]. Its mod 13 arithmetic distinguishes each Yukawa matrix element of the texture. We construct a model of effective...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2019-10, Vol.100 (7), p.075008-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose T13 = Z13⋊Z3 as the underlying non-Abelian discrete family symmetry of the asymmetric texture presented in [M. H. Rahat, P. Ramond, and B. Xu, Phys. Rev. D 98, 055030 (2018).]. Its mod 13 arithmetic distinguishes each Yukawa matrix element of the texture. We construct a model of effective interactions that singles out the asymmetry and equates, without fine-tuning, the products of down-quark and charged-lepton masses at a GUT-like scale. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.100.075008 |