Bilinear Forms on the Green Rings of Finite Dimensional Hopf Algebras

In this paper, we study the Green ring and the stable Green ring of a finite dimensional Hopf algebra by means of bilinear forms. We show that the Green ring of a Hopf algebra of finite representation type is a Frobenius algebra over ℤ with a dual basis associated to almost split sequences. On the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2019-12, Vol.22 (6), p.1569-1598
Hauptverfasser: Wang, Zhihua, Li, Libin, Zhang, Yinhuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the Green ring and the stable Green ring of a finite dimensional Hopf algebra by means of bilinear forms. We show that the Green ring of a Hopf algebra of finite representation type is a Frobenius algebra over ℤ with a dual basis associated to almost split sequences. On the stable Green ring we define a new bilinear form which is more accurate to determine the bi-Frobenius algebra structure on the stable Green ring. We show that the complexified stable Green algebra is a group-like algebra, and hence a bi-Frobenius algebra, if the bilinear form on the stable Green ring is non-degenerate.
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-018-9832-2