Kernels of Toeplitz Operators and Rational Interpolation

The kernel of a Toeplitz operator on the Hardy class H 2 in the unit disk is a nearly invariantsubspace of the backward shift operator, and, by D. Hitt’s result, it has the form g · K ω where ω is an inner function, K ω = H 2 ⊝ ωH 2 , and g is an isometric multiplier on K ω . We describe the functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-03, Vol.243 (6), p.880-894
1. Verfasser: Kapustin, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The kernel of a Toeplitz operator on the Hardy class H 2 in the unit disk is a nearly invariantsubspace of the backward shift operator, and, by D. Hitt’s result, it has the form g · K ω where ω is an inner function, K ω = H 2 ⊝ ωH 2 , and g is an isometric multiplier on K ω . We describe the functions ω and g for the kernel of the Toeplitz operator with symbol . θ ¯ Δ where θ is an inner function and Δ is a finite Blaschke product.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-019-04588-0