Kernels of Toeplitz Operators and Rational Interpolation
The kernel of a Toeplitz operator on the Hardy class H 2 in the unit disk is a nearly invariantsubspace of the backward shift operator, and, by D. Hitt’s result, it has the form g · K ω where ω is an inner function, K ω = H 2 ⊝ ωH 2 , and g is an isometric multiplier on K ω . We describe the functio...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-03, Vol.243 (6), p.880-894 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The kernel of a Toeplitz operator on the Hardy class
H
2
in the unit disk is a nearly invariantsubspace of the backward shift operator, and, by D. Hitt’s result, it has the form g ·
K
ω
where ω is an inner function,
K
ω
=
H
2
⊝
ωH
2
, and g is an isometric multiplier on
K
ω
. We describe the functions ω and g for the kernel of the Toeplitz operator with symbol .
θ
¯
Δ
where
θ
is an inner function and Δ is a finite Blaschke product. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-019-04588-0 |