On the Solvability Complexity Index for Unbounded Selfadjoint and Schrödinger Operators
We study the solvability complexity index (SCI) for unbounded selfadjoint operators on separable Hilbert spaces and perturbations thereof. In particular, we show that if the extended essential spectrum of a selfadjoint operator is convex, then the SCI for computing its spectrum is equal to 1. This r...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2019-12, Vol.91 (6), p.1-23, Article 54 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the solvability complexity index (SCI) for unbounded selfadjoint operators on separable Hilbert spaces and perturbations thereof. In particular, we show that if the extended essential spectrum of a selfadjoint operator is convex, then the SCI for computing its spectrum is equal to 1. This result is then extended to relatively compact perturbations of such operators and applied to Schrödinger operators with (complex valued) potentials decaying at infinity to obtain
SCI
=
1
in this case, as well. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-019-2555-x |