On the Solvability Complexity Index for Unbounded Selfadjoint and Schrödinger Operators

We study the solvability complexity index (SCI) for unbounded selfadjoint operators on separable Hilbert spaces and perturbations thereof. In particular, we show that if the extended essential spectrum of a selfadjoint operator is convex, then the SCI for computing its spectrum is equal to 1. This r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2019-12, Vol.91 (6), p.1-23, Article 54
1. Verfasser: Rösler, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the solvability complexity index (SCI) for unbounded selfadjoint operators on separable Hilbert spaces and perturbations thereof. In particular, we show that if the extended essential spectrum of a selfadjoint operator is convex, then the SCI for computing its spectrum is equal to 1. This result is then extended to relatively compact perturbations of such operators and applied to Schrödinger operators with (complex valued) potentials decaying at infinity to obtain SCI = 1 in this case, as well.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-019-2555-x