Anderson Localization in 2D Amorphous MoO3‐x Monolayers for Electrochemical Ammonia Synthesis

Two‐dimensional amorphous semiconductor (2DAS) monolayers can be regarded as a new phase of 2D monolayers materials and will serve as a promising field for the various electronic and optoelectronic applications. Here, together with the first‐principles calculations within density functional theory,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2019-11, Vol.11 (22), p.5412-5416
Hauptverfasser: Liu, Wei, Li, Chong, Xu, Qun, Yan, Pengfei, Niu, Chunyao, Shen, Yonglong, Yuan, Pengfei, Jia, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5416
container_issue 22
container_start_page 5412
container_title ChemCatChem
container_volume 11
creator Liu, Wei
Li, Chong
Xu, Qun
Yan, Pengfei
Niu, Chunyao
Shen, Yonglong
Yuan, Pengfei
Jia, Yu
description Two‐dimensional amorphous semiconductor (2DAS) monolayers can be regarded as a new phase of 2D monolayers materials and will serve as a promising field for the various electronic and optoelectronic applications. Here, together with the first‐principles calculations within density functional theory, we experimentally demonstrate that the 2DAS MoO3‐x monolayers can enhance the electrochemical nitrogen reduction reaction (NRR). To be specific, the NH3 yield and faradaic efficiency (FE) reach 35.83 ug h−1 mg−1cat at −0.40 V and 12.01 % at −0.20 V vs. reversible hydrogen electrode (RHE), respectively, and which can be dramatically improved than that of reported defective MoO3 nanosheets. Further theoretical calculations reveal that the high electrochemical performance in NH3 yield is contributed to the strong Anderson localization and electron confinement dimensionally. And such Anderson tail states can resonate effectively with the states of intermediate HNNH, playing the critical role in the rate limiting step of NRR. Integrated experimental findings and theoretical understanding, a new concept of Anderson confinement catalysis is put forward, and could be extended to other 2DAS for potential catalytic reactions. Nitrogen reduction: Here, it is demonstrated that Anderson tail states of two‐dimensional (2D) amorphous MoO3–x can resonate effectively with the states of intermediate HNNH and achieve the high‐efficiency electrochemical activity for nitrogen reduction reaction with the NH3 yield and faradaic efficiency reaching 35.83 ug h−1 mg−1cat at −0.40 V and 12.01 % at −0.20 V, respectively.
doi_str_mv 10.1002/cctc.201901171
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2316718343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316718343</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2991-1e88a5a8f651fa29fe64ae98cd8730ea1de8b9432f38a43ca1fa2f88bbb55ef83</originalsourceid><addsrcrecordid>eNo9kMtKAzEYhYMoWKtb1wHXU3OZS7IsY61CpQvrOmTShKbMJDWZouPKR_AZfRJTKl3958B3zg8HgFuMJhghcq9UryYEYY4wrvAZGGFWVhllnJ-fNEOX4CrGLUIlp1UxAmLq1jpE7-DCK9naL9nbZKyD5AFOOx92G7-P8MUv6e_3z2cSzrdySBFofICzVqs-eLXRnU3xlOi8sxK-Dq7f6GjjNbgwso365v-OwdvjbFU_ZYvl_LmeLrIt4RxnWDMmC8lMWWAjCTe6zKXmTK1ZRZGWeK1Zw3NKDGUyp0oeKMNY0zRFoQ2jY3B37N0F_77XsRdbvw8uvRSE4rLCjOY0UfxIfdhWD2IXbCfDIDAShwXFYUFxWlDU9ao-OfoHLyBpUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316718343</pqid></control><display><type>article</type><title>Anderson Localization in 2D Amorphous MoO3‐x Monolayers for Electrochemical Ammonia Synthesis</title><source>Access via Wiley Online Library</source><creator>Liu, Wei ; Li, Chong ; Xu, Qun ; Yan, Pengfei ; Niu, Chunyao ; Shen, Yonglong ; Yuan, Pengfei ; Jia, Yu</creator><creatorcontrib>Liu, Wei ; Li, Chong ; Xu, Qun ; Yan, Pengfei ; Niu, Chunyao ; Shen, Yonglong ; Yuan, Pengfei ; Jia, Yu</creatorcontrib><description>Two‐dimensional amorphous semiconductor (2DAS) monolayers can be regarded as a new phase of 2D monolayers materials and will serve as a promising field for the various electronic and optoelectronic applications. Here, together with the first‐principles calculations within density functional theory, we experimentally demonstrate that the 2DAS MoO3‐x monolayers can enhance the electrochemical nitrogen reduction reaction (NRR). To be specific, the NH3 yield and faradaic efficiency (FE) reach 35.83 ug h−1 mg−1cat at −0.40 V and 12.01 % at −0.20 V vs. reversible hydrogen electrode (RHE), respectively, and which can be dramatically improved than that of reported defective MoO3 nanosheets. Further theoretical calculations reveal that the high electrochemical performance in NH3 yield is contributed to the strong Anderson localization and electron confinement dimensionally. And such Anderson tail states can resonate effectively with the states of intermediate HNNH, playing the critical role in the rate limiting step of NRR. Integrated experimental findings and theoretical understanding, a new concept of Anderson confinement catalysis is put forward, and could be extended to other 2DAS for potential catalytic reactions. Nitrogen reduction: Here, it is demonstrated that Anderson tail states of two‐dimensional (2D) amorphous MoO3–x can resonate effectively with the states of intermediate HNNH and achieve the high‐efficiency electrochemical activity for nitrogen reduction reaction with the NH3 yield and faradaic efficiency reaching 35.83 ug h−1 mg−1cat at −0.40 V and 12.01 % at −0.20 V, respectively.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201901171</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; amorphous ; Anderson localization ; Catalysis ; Chemical reduction ; Confinement ; Density functional theory ; Electrochemical analysis ; Localization ; Mathematical analysis ; Molybdenum oxides ; Molybdenum trioxide ; Monolayers ; nitrogen reduction reaction ; Optoelectronics ; supercritical CO2</subject><ispartof>ChemCatChem, 2019-11, Vol.11 (22), p.5412-5416</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2264-0266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201901171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201901171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Li, Chong</creatorcontrib><creatorcontrib>Xu, Qun</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Niu, Chunyao</creatorcontrib><creatorcontrib>Shen, Yonglong</creatorcontrib><creatorcontrib>Yuan, Pengfei</creatorcontrib><creatorcontrib>Jia, Yu</creatorcontrib><title>Anderson Localization in 2D Amorphous MoO3‐x Monolayers for Electrochemical Ammonia Synthesis</title><title>ChemCatChem</title><description>Two‐dimensional amorphous semiconductor (2DAS) monolayers can be regarded as a new phase of 2D monolayers materials and will serve as a promising field for the various electronic and optoelectronic applications. Here, together with the first‐principles calculations within density functional theory, we experimentally demonstrate that the 2DAS MoO3‐x monolayers can enhance the electrochemical nitrogen reduction reaction (NRR). To be specific, the NH3 yield and faradaic efficiency (FE) reach 35.83 ug h−1 mg−1cat at −0.40 V and 12.01 % at −0.20 V vs. reversible hydrogen electrode (RHE), respectively, and which can be dramatically improved than that of reported defective MoO3 nanosheets. Further theoretical calculations reveal that the high electrochemical performance in NH3 yield is contributed to the strong Anderson localization and electron confinement dimensionally. And such Anderson tail states can resonate effectively with the states of intermediate HNNH, playing the critical role in the rate limiting step of NRR. Integrated experimental findings and theoretical understanding, a new concept of Anderson confinement catalysis is put forward, and could be extended to other 2DAS for potential catalytic reactions. Nitrogen reduction: Here, it is demonstrated that Anderson tail states of two‐dimensional (2D) amorphous MoO3–x can resonate effectively with the states of intermediate HNNH and achieve the high‐efficiency electrochemical activity for nitrogen reduction reaction with the NH3 yield and faradaic efficiency reaching 35.83 ug h−1 mg−1cat at −0.40 V and 12.01 % at −0.20 V, respectively.</description><subject>Ammonia</subject><subject>amorphous</subject><subject>Anderson localization</subject><subject>Catalysis</subject><subject>Chemical reduction</subject><subject>Confinement</subject><subject>Density functional theory</subject><subject>Electrochemical analysis</subject><subject>Localization</subject><subject>Mathematical analysis</subject><subject>Molybdenum oxides</subject><subject>Molybdenum trioxide</subject><subject>Monolayers</subject><subject>nitrogen reduction reaction</subject><subject>Optoelectronics</subject><subject>supercritical CO2</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtKAzEYhYMoWKtb1wHXU3OZS7IsY61CpQvrOmTShKbMJDWZouPKR_AZfRJTKl3958B3zg8HgFuMJhghcq9UryYEYY4wrvAZGGFWVhllnJ-fNEOX4CrGLUIlp1UxAmLq1jpE7-DCK9naL9nbZKyD5AFOOx92G7-P8MUv6e_3z2cSzrdySBFofICzVqs-eLXRnU3xlOi8sxK-Dq7f6GjjNbgwso365v-OwdvjbFU_ZYvl_LmeLrIt4RxnWDMmC8lMWWAjCTe6zKXmTK1ZRZGWeK1Zw3NKDGUyp0oeKMNY0zRFoQ2jY3B37N0F_77XsRdbvw8uvRSE4rLCjOY0UfxIfdhWD2IXbCfDIDAShwXFYUFxWlDU9ao-OfoHLyBpUw</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Liu, Wei</creator><creator>Li, Chong</creator><creator>Xu, Qun</creator><creator>Yan, Pengfei</creator><creator>Niu, Chunyao</creator><creator>Shen, Yonglong</creator><creator>Yuan, Pengfei</creator><creator>Jia, Yu</creator><general>Wiley Subscription Services, Inc</general><scope/><orcidid>https://orcid.org/0000-0002-2264-0266</orcidid></search><sort><creationdate>20191121</creationdate><title>Anderson Localization in 2D Amorphous MoO3‐x Monolayers for Electrochemical Ammonia Synthesis</title><author>Liu, Wei ; Li, Chong ; Xu, Qun ; Yan, Pengfei ; Niu, Chunyao ; Shen, Yonglong ; Yuan, Pengfei ; Jia, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2991-1e88a5a8f651fa29fe64ae98cd8730ea1de8b9432f38a43ca1fa2f88bbb55ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>amorphous</topic><topic>Anderson localization</topic><topic>Catalysis</topic><topic>Chemical reduction</topic><topic>Confinement</topic><topic>Density functional theory</topic><topic>Electrochemical analysis</topic><topic>Localization</topic><topic>Mathematical analysis</topic><topic>Molybdenum oxides</topic><topic>Molybdenum trioxide</topic><topic>Monolayers</topic><topic>nitrogen reduction reaction</topic><topic>Optoelectronics</topic><topic>supercritical CO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Li, Chong</creatorcontrib><creatorcontrib>Xu, Qun</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Niu, Chunyao</creatorcontrib><creatorcontrib>Shen, Yonglong</creatorcontrib><creatorcontrib>Yuan, Pengfei</creatorcontrib><creatorcontrib>Jia, Yu</creatorcontrib><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei</au><au>Li, Chong</au><au>Xu, Qun</au><au>Yan, Pengfei</au><au>Niu, Chunyao</au><au>Shen, Yonglong</au><au>Yuan, Pengfei</au><au>Jia, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anderson Localization in 2D Amorphous MoO3‐x Monolayers for Electrochemical Ammonia Synthesis</atitle><jtitle>ChemCatChem</jtitle><date>2019-11-21</date><risdate>2019</risdate><volume>11</volume><issue>22</issue><spage>5412</spage><epage>5416</epage><pages>5412-5416</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Two‐dimensional amorphous semiconductor (2DAS) monolayers can be regarded as a new phase of 2D monolayers materials and will serve as a promising field for the various electronic and optoelectronic applications. Here, together with the first‐principles calculations within density functional theory, we experimentally demonstrate that the 2DAS MoO3‐x monolayers can enhance the electrochemical nitrogen reduction reaction (NRR). To be specific, the NH3 yield and faradaic efficiency (FE) reach 35.83 ug h−1 mg−1cat at −0.40 V and 12.01 % at −0.20 V vs. reversible hydrogen electrode (RHE), respectively, and which can be dramatically improved than that of reported defective MoO3 nanosheets. Further theoretical calculations reveal that the high electrochemical performance in NH3 yield is contributed to the strong Anderson localization and electron confinement dimensionally. And such Anderson tail states can resonate effectively with the states of intermediate HNNH, playing the critical role in the rate limiting step of NRR. Integrated experimental findings and theoretical understanding, a new concept of Anderson confinement catalysis is put forward, and could be extended to other 2DAS for potential catalytic reactions. Nitrogen reduction: Here, it is demonstrated that Anderson tail states of two‐dimensional (2D) amorphous MoO3–x can resonate effectively with the states of intermediate HNNH and achieve the high‐efficiency electrochemical activity for nitrogen reduction reaction with the NH3 yield and faradaic efficiency reaching 35.83 ug h−1 mg−1cat at −0.40 V and 12.01 % at −0.20 V, respectively.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201901171</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2264-0266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2019-11, Vol.11 (22), p.5412-5416
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2316718343
source Access via Wiley Online Library
subjects Ammonia
amorphous
Anderson localization
Catalysis
Chemical reduction
Confinement
Density functional theory
Electrochemical analysis
Localization
Mathematical analysis
Molybdenum oxides
Molybdenum trioxide
Monolayers
nitrogen reduction reaction
Optoelectronics
supercritical CO2
title Anderson Localization in 2D Amorphous MoO3‐x Monolayers for Electrochemical Ammonia Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anderson%20Localization%20in%202D%20Amorphous%20MoO3%E2%80%90x%20Monolayers%20for%20Electrochemical%20Ammonia%20Synthesis&rft.jtitle=ChemCatChem&rft.au=Liu,%20Wei&rft.date=2019-11-21&rft.volume=11&rft.issue=22&rft.spage=5412&rft.epage=5416&rft.pages=5412-5416&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201901171&rft_dat=%3Cproquest_wiley%3E2316718343%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316718343&rft_id=info:pmid/&rfr_iscdi=true