Some New Constructions of Quantum MDS Codes

It is an important task to construct quantum maximum-distance-separable (MDS) codes with good parameters. In the present paper, we provide six new classes of q -ary quantum MDS codes by using generalized Reed-Solomon (GRS) codes and Hermitian construction. The minimum distances of our quantum MDS c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2019-12, Vol.65 (12), p.7840-7847
Hauptverfasser: Fang, Weijun, Fu, Fang-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is an important task to construct quantum maximum-distance-separable (MDS) codes with good parameters. In the present paper, we provide six new classes of q -ary quantum MDS codes by using generalized Reed-Solomon (GRS) codes and Hermitian construction. The minimum distances of our quantum MDS codes can be larger than \frac {q}{2}+1 . Three of these six classes of quantum MDS codes have longer lengths than the ones constructed in [1] and [2] , hence some of their results can be easily derived from ours via the propagation rule. Moreover, some known quantum MDS codes of specific lengths can be seen as special cases of ours and the minimum distances of some known quantum MDS codes are also improved as well.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2939114