The investigation into the adsorption removal of ammonium by natural and modified zeolites : kinetics, isotherms, and thermodynamics

The objectives of this study were to modify Chinese natural zeolite by NaCl and to investigate its suitability as a low-cost clay adsorbent to remove ammonium from aqueous solution. The effect of pH on ammonium removal was investigated by batch experiments. The findings indicated that pH has a signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water S. A. 2019-10, Vol.45 (4), p.648-656
Hauptverfasser: Zhang, Mingchuan, Chen, Tong, Zhao, Xuetong, Pan, Min, Deng, Tianran, Zou, Xuehua, Huang, Xiaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objectives of this study were to modify Chinese natural zeolite by NaCl and to investigate its suitability as a low-cost clay adsorbent to remove ammonium from aqueous solution. The effect of pH on ammonium removal was investigated by batch experiments. The findings indicated that pH has a significant effect on the removal of ammonium by M-Zeo and maximum adsorption occured at pH 8. Ion exchange dominated the ammonium adsorption process at neutral pH, with the order of exchange selectivity being Na+ > Ca2+ > K+ > Mg2 +. The Freundlich model provided a better description of the adsorption process than the Langmuir model. The maximum ammonium adsorption capacity was 17.83 mg/g for M-Zeo at 293K. Considering the adsorption isotherms and thermodynamic studies, the adsorption of ammonium by M-Zeo was endothermic and spontaneous chemisorption. Kinetic studies indicated that the adsorption of ammonium onto M-Zeo is well fitted by the pseudo-second-order kinetic model. Ea in the Arrhenius equation suggested the adsorption of ammonium on M-Zeo was a fast and diffusion-controlled process. The regeneration rate was 90.61% after 5 cycles. The removal of ammonium from real wastewater was carried out, and the removal efficiency was up to 99.13%. Thus, due to its cost-effectiveness and high adsorption capacity, M-Zeo has potential for use in ammonium removal from aqueous solutions.
ISSN:0378-4738
1816-7950
1816-7950
DOI:10.17159/wsa/2019.v45.i4.7546