Parametrically amplified phase-incoherent superconductivity in YBa\(_2\)Cu\(_3\)O\(_{6+x}\)
The possibility of enhancing desirable functional properties of complex materials by optical driving is motivating a series of studies of their nonlinear terahertz response. In high-Tc cuprates, large amplitude excitation of certain infrared-active lattice vibrations has been shown to induce transie...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The possibility of enhancing desirable functional properties of complex materials by optical driving is motivating a series of studies of their nonlinear terahertz response. In high-Tc cuprates, large amplitude excitation of certain infrared-active lattice vibrations has been shown to induce transient features in the reflectivity suggestive of non-equilibrium superconductivity. Yet, a microscopic mechanism for these observations is still lacking. Here, we report measurements of time- and scattering-angle-dependent second-harmonic generation in YBa\(_2\)Cu\(_3\)O\(_{6+x}\), taken under the same excitation conditions that result in superconductor-like terahertz reflectivity. We discover a three-order-of-magnitude amplification of a 2.5-terahertz electronic mode, which is unique because of its symmetry, momentum, and temperature dependence. A theory for parametric three-wave amplification of Josephson plasmons, which are assumed to be well-formed below T\(_c\) but overdamped throughout the pseudogap phase, explains all these observations and provides a mechanism for non-equilibrium superconductivity. More broadly, our work underscores the role of parametric mode mixing to stabilize fluctuating orders in quantum materials. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1911.08284 |