Optimal Single-Choice Prophet Inequalities from Samples
We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of \(1/2\) can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant \(\varepsilon >...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of \(1/2\) can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant \(\varepsilon > 0\), \(O(n)\) samples from the distribution suffice to achieve the optimal competitive ratio (\(\approx 0.745\)) within \((1+\varepsilon)\), resolving an open problem of Correa, D\"utting, Fischer, and Schewior. |
---|---|
ISSN: | 2331-8422 |