Mixed model identification for linear time‐invariant systems with mixed noises in frequency domain

In this paper, we present a new method for frequency domain identification of discrete linear time‐invariant systems. We take consideration of the case where the output noises are mixed or unknown. In order to deal with this problem, a new mixed model structure is used correspondingly. The augmented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2019-12, Vol.42 (18), p.7285-7295
Hauptverfasser: Mi, Wen, Li, Shuang, Feng, Liqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a new method for frequency domain identification of discrete linear time‐invariant systems. We take consideration of the case where the output noises are mixed or unknown. In order to deal with this problem, a new mixed model structure is used correspondingly. The augmented Lagrangian method (ALM) is combined in selection of poles for the shifted Cauchy kernels to get solutions to the optimal problem. Simulations show the proposed method can get efficient approximation to the original systems.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.5837