A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution

In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2019-12, Vol.42 (18), p.6358-6368
1. Verfasser: Simčić, Loredana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6368
container_issue 18
container_start_page 6358
container_title Mathematical methods in the applied sciences
container_volume 42
creator Simčić, Loredana
description In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous boundary conditions for microrotation and heat flux. Under the assumptions that this problem has a generalized solution and that the initial mass density, temperature, the velocity, and microrotation vectors are smooth enough functions, we prove that this solution is unique.
doi_str_mv 10.1002/mma.5727
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315616088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315616088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-d3f5451f2b382d674bddf00f8727a22b765609d964f83539388d88f36e4f266b3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SOxHXZVxUtqxYauLSe2wZUTB7uhKl-PadmymtHozMy9F4BrjGYYIXLXdWpWccJPwASjui5wydkpmCDMUVESXJ6Di5Q2CCGBMZkAPYfpw6gIrQ87OMTQeNNBGyJsQzdEk5LLE_jlUhvGBDvXxjAEf1gYnb6H6959jqbPIAwWKvie-6i8-zYapuDHrQv9JTizyidz9VenYP348LZ4LpavTy-L-bJoSU15oamtygpb0lBBNONlo7VFyIpsRxHScFYxVOualVbQitZUCC2EpcyUljDW0Cm4Od7NPrKotJWbMMY-v5SE4ophhoTI1O2RylZSisbKIbpOxb3ESP5mKHOG8jfDjBZHdOe82f_LydVqfuB_APwxcrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315616088</pqid></control><display><type>article</type><title>A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Simčić, Loredana</creator><creatorcontrib>Simčić, Loredana</creatorcontrib><description>In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous boundary conditions for microrotation and heat flux. Under the assumptions that this problem has a generalized solution and that the initial mass density, temperature, the velocity, and microrotation vectors are smooth enough functions, we prove that this solution is unique.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5727</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Compressibility ; Heat flux ; Heat transmission ; Mathematical analysis ; micropolar fluid ; Micropolar fluids ; Shear flow ; uniqueness of the solution ; Vectors (mathematics)</subject><ispartof>Mathematical methods in the applied sciences, 2019-12, Vol.42 (18), p.6358-6368</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-d3f5451f2b382d674bddf00f8727a22b765609d964f83539388d88f36e4f266b3</citedby><cites>FETCH-LOGICAL-c2937-d3f5451f2b382d674bddf00f8727a22b765609d964f83539388d88f36e4f266b3</cites><orcidid>0000-0003-1793-2181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5727$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5727$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Simčić, Loredana</creatorcontrib><title>A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous boundary conditions for microrotation and heat flux. Under the assumptions that this problem has a generalized solution and that the initial mass density, temperature, the velocity, and microrotation vectors are smooth enough functions, we prove that this solution is unique.</description><subject>Boundary conditions</subject><subject>Compressibility</subject><subject>Heat flux</subject><subject>Heat transmission</subject><subject>Mathematical analysis</subject><subject>micropolar fluid</subject><subject>Micropolar fluids</subject><subject>Shear flow</subject><subject>uniqueness of the solution</subject><subject>Vectors (mathematics)</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SOxHXZVxUtqxYauLSe2wZUTB7uhKl-PadmymtHozMy9F4BrjGYYIXLXdWpWccJPwASjui5wydkpmCDMUVESXJ6Di5Q2CCGBMZkAPYfpw6gIrQ87OMTQeNNBGyJsQzdEk5LLE_jlUhvGBDvXxjAEf1gYnb6H6959jqbPIAwWKvie-6i8-zYapuDHrQv9JTizyidz9VenYP348LZ4LpavTy-L-bJoSU15oamtygpb0lBBNONlo7VFyIpsRxHScFYxVOualVbQitZUCC2EpcyUljDW0Cm4Od7NPrKotJWbMMY-v5SE4ophhoTI1O2RylZSisbKIbpOxb3ESP5mKHOG8jfDjBZHdOe82f_LydVqfuB_APwxcrA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Simčić, Loredana</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1793-2181</orcidid></search><sort><creationdate>201912</creationdate><title>A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution</title><author>Simčić, Loredana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-d3f5451f2b382d674bddf00f8727a22b765609d964f83539388d88f36e4f266b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Compressibility</topic><topic>Heat flux</topic><topic>Heat transmission</topic><topic>Mathematical analysis</topic><topic>micropolar fluid</topic><topic>Micropolar fluids</topic><topic>Shear flow</topic><topic>uniqueness of the solution</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simčić, Loredana</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simčić, Loredana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2019-12</date><risdate>2019</risdate><volume>42</volume><issue>18</issue><spage>6358</spage><epage>6368</epage><pages>6358-6368</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous boundary conditions for microrotation and heat flux. Under the assumptions that this problem has a generalized solution and that the initial mass density, temperature, the velocity, and microrotation vectors are smooth enough functions, we prove that this solution is unique.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5727</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1793-2181</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2019-12, Vol.42 (18), p.6358-6368
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2315616088
source Wiley Online Library Journals Frontfile Complete
subjects Boundary conditions
Compressibility
Heat flux
Heat transmission
Mathematical analysis
micropolar fluid
Micropolar fluids
Shear flow
uniqueness of the solution
Vectors (mathematics)
title A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shear%20flow%20problem%20for%20compressible%20viscous%20micropolar%20fluid:%20Uniqueness%20of%20a%20generalized%20solution&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Sim%C4%8Di%C4%87,%20Loredana&rft.date=2019-12&rft.volume=42&rft.issue=18&rft.spage=6358&rft.epage=6368&rft.pages=6358-6368&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5727&rft_dat=%3Cproquest_cross%3E2315616088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315616088&rft_id=info:pmid/&rfr_iscdi=true