A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution
In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous bo...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2019-12, Vol.42 (18), p.6358-6368 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6368 |
---|---|
container_issue | 18 |
container_start_page | 6358 |
container_title | Mathematical methods in the applied sciences |
container_volume | 42 |
creator | Simčić, Loredana |
description | In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous boundary conditions for microrotation and heat flux. Under the assumptions that this problem has a generalized solution and that the initial mass density, temperature, the velocity, and microrotation vectors are smooth enough functions, we prove that this solution is unique. |
doi_str_mv | 10.1002/mma.5727 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315616088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315616088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-d3f5451f2b382d674bddf00f8727a22b765609d964f83539388d88f36e4f266b3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SOxHXZVxUtqxYauLSe2wZUTB7uhKl-PadmymtHozMy9F4BrjGYYIXLXdWpWccJPwASjui5wydkpmCDMUVESXJ6Di5Q2CCGBMZkAPYfpw6gIrQ87OMTQeNNBGyJsQzdEk5LLE_jlUhvGBDvXxjAEf1gYnb6H6959jqbPIAwWKvie-6i8-zYapuDHrQv9JTizyidz9VenYP348LZ4LpavTy-L-bJoSU15oamtygpb0lBBNONlo7VFyIpsRxHScFYxVOualVbQitZUCC2EpcyUljDW0Cm4Od7NPrKotJWbMMY-v5SE4ophhoTI1O2RylZSisbKIbpOxb3ESP5mKHOG8jfDjBZHdOe82f_LydVqfuB_APwxcrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315616088</pqid></control><display><type>article</type><title>A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Simčić, Loredana</creator><creatorcontrib>Simčić, Loredana</creatorcontrib><description>In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous boundary conditions for microrotation and heat flux. Under the assumptions that this problem has a generalized solution and that the initial mass density, temperature, the velocity, and microrotation vectors are smooth enough functions, we prove that this solution is unique.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5727</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Compressibility ; Heat flux ; Heat transmission ; Mathematical analysis ; micropolar fluid ; Micropolar fluids ; Shear flow ; uniqueness of the solution ; Vectors (mathematics)</subject><ispartof>Mathematical methods in the applied sciences, 2019-12, Vol.42 (18), p.6358-6368</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-d3f5451f2b382d674bddf00f8727a22b765609d964f83539388d88f36e4f266b3</citedby><cites>FETCH-LOGICAL-c2937-d3f5451f2b382d674bddf00f8727a22b765609d964f83539388d88f36e4f266b3</cites><orcidid>0000-0003-1793-2181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5727$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5727$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Simčić, Loredana</creatorcontrib><title>A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous boundary conditions for microrotation and heat flux. Under the assumptions that this problem has a generalized solution and that the initial mass density, temperature, the velocity, and microrotation vectors are smooth enough functions, we prove that this solution is unique.</description><subject>Boundary conditions</subject><subject>Compressibility</subject><subject>Heat flux</subject><subject>Heat transmission</subject><subject>Mathematical analysis</subject><subject>micropolar fluid</subject><subject>Micropolar fluids</subject><subject>Shear flow</subject><subject>uniqueness of the solution</subject><subject>Vectors (mathematics)</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SOxHXZVxUtqxYauLSe2wZUTB7uhKl-PadmymtHozMy9F4BrjGYYIXLXdWpWccJPwASjui5wydkpmCDMUVESXJ6Di5Q2CCGBMZkAPYfpw6gIrQ87OMTQeNNBGyJsQzdEk5LLE_jlUhvGBDvXxjAEf1gYnb6H6959jqbPIAwWKvie-6i8-zYapuDHrQv9JTizyidz9VenYP348LZ4LpavTy-L-bJoSU15oamtygpb0lBBNONlo7VFyIpsRxHScFYxVOualVbQitZUCC2EpcyUljDW0Cm4Od7NPrKotJWbMMY-v5SE4ophhoTI1O2RylZSisbKIbpOxb3ESP5mKHOG8jfDjBZHdOe82f_LydVqfuB_APwxcrA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Simčić, Loredana</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1793-2181</orcidid></search><sort><creationdate>201912</creationdate><title>A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution</title><author>Simčić, Loredana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-d3f5451f2b382d674bddf00f8727a22b765609d964f83539388d88f36e4f266b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Compressibility</topic><topic>Heat flux</topic><topic>Heat transmission</topic><topic>Mathematical analysis</topic><topic>micropolar fluid</topic><topic>Micropolar fluids</topic><topic>Shear flow</topic><topic>uniqueness of the solution</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simčić, Loredana</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simčić, Loredana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2019-12</date><risdate>2019</risdate><volume>42</volume><issue>18</issue><spage>6358</spage><epage>6368</epage><pages>6358-6368</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous boundary conditions for microrotation and heat flux. Under the assumptions that this problem has a generalized solution and that the initial mass density, temperature, the velocity, and microrotation vectors are smooth enough functions, we prove that this solution is unique.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5727</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1793-2181</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2019-12, Vol.42 (18), p.6358-6368 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2315616088 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boundary conditions Compressibility Heat flux Heat transmission Mathematical analysis micropolar fluid Micropolar fluids Shear flow uniqueness of the solution Vectors (mathematics) |
title | A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shear%20flow%20problem%20for%20compressible%20viscous%20micropolar%20fluid:%20Uniqueness%20of%20a%20generalized%20solution&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Sim%C4%8Di%C4%87,%20Loredana&rft.date=2019-12&rft.volume=42&rft.issue=18&rft.spage=6358&rft.epage=6368&rft.pages=6358-6368&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5727&rft_dat=%3Cproquest_cross%3E2315616088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315616088&rft_id=info:pmid/&rfr_iscdi=true |