A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution
In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous bo...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2019-12, Vol.42 (18), p.6358-6368 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the nonstationary shear flow of a compressible, viscous, and heat‐conducting micropolar fluid. The mathematical model is set up in Lagrangian description in the form of initial‐boundary problem with inhomogeneous boundary conditions for velocity and standard homogeneous boundary conditions for microrotation and heat flux. Under the assumptions that this problem has a generalized solution and that the initial mass density, temperature, the velocity, and microrotation vectors are smooth enough functions, we prove that this solution is unique. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.5727 |