On Traveling Solitary Waves and Absence of Small Data Scattering for Nonlinear Half-Wave Equations

We consider nonlinear half-wave equations with focusing power-type nonlinearity i ∂ t u = - Δ u - | u | p - 1 u , with ( t , x ) ∈ R × R d with exponents 1 < p < ∞ for d  = 1 and 1 < p < ( d + 1 ) / ( d - 1 ) for d ≥  2. We study traveling solitary waves of the form u ( t , x ) = e i ω t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-12, Vol.372 (2), p.713-732
Hauptverfasser: Bellazzini, Jacopo, Georgiev, Vladimir, Lenzmann, Enno, Visciglia, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider nonlinear half-wave equations with focusing power-type nonlinearity i ∂ t u = - Δ u - | u | p - 1 u , with ( t , x ) ∈ R × R d with exponents 1 < p < ∞ for d  = 1 and 1 < p < ( d + 1 ) / ( d - 1 ) for d ≥  2. We study traveling solitary waves of the form u ( t , x ) = e i ω t Q v ( x - v t ) with frequency ω ∈ R , velocity v ∈ R d , and some finite-energy profile Q v ∈ H 1 / 2 ( R d ) , Q v ≢ 0 . We prove that traveling solitary waves for speeds | v | ≥ 1 do not exist. Furthermore, we generalize the non-existence result to the square root Klein–Gordon operator - Δ + m 2 and other nonlinearities. As a second main result, we show that small data scattering fails to hold for the focusing half-wave equation in any space dimension. The proof is based on the existence and properties of traveling solitary waves for speeds | v | < 1 . Finally, we discuss the energy-critical case when p = ( d + 1 ) / ( d - 1 ) in dimensions d ≥  2.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-019-03374-y