On Traveling Solitary Waves and Absence of Small Data Scattering for Nonlinear Half-Wave Equations
We consider nonlinear half-wave equations with focusing power-type nonlinearity i ∂ t u = - Δ u - | u | p - 1 u , with ( t , x ) ∈ R × R d with exponents 1 < p < ∞ for d = 1 and 1 < p < ( d + 1 ) / ( d - 1 ) for d ≥ 2. We study traveling solitary waves of the form u ( t , x ) = e i ω t...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2019-12, Vol.372 (2), p.713-732 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider nonlinear half-wave equations with focusing power-type nonlinearity
i
∂
t
u
=
-
Δ
u
-
|
u
|
p
-
1
u
,
with
(
t
,
x
)
∈
R
×
R
d
with exponents
1
<
p
<
∞
for
d
= 1 and
1
<
p
<
(
d
+
1
)
/
(
d
-
1
)
for
d
≥ 2. We study traveling solitary waves of the form
u
(
t
,
x
)
=
e
i
ω
t
Q
v
(
x
-
v
t
)
with frequency
ω
∈
R
, velocity
v
∈
R
d
, and some finite-energy profile
Q
v
∈
H
1
/
2
(
R
d
)
,
Q
v
≢
0
. We prove that traveling solitary waves for speeds
|
v
|
≥
1
do not exist. Furthermore, we generalize the non-existence result to the square root Klein–Gordon operator
-
Δ
+
m
2
and other nonlinearities. As a second main result, we show that small data scattering fails to hold for the focusing half-wave equation in any space dimension. The proof is based on the existence and properties of traveling solitary waves for speeds
|
v
|
<
1
. Finally, we discuss the energy-critical case when
p
=
(
d
+
1
)
/
(
d
-
1
)
in dimensions
d
≥ 2. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-019-03374-y |