ACTIVE RANKING FROM PAIRWISE COMPARISONS AND WHEN PARAMETRIC ASSUMPTIONS DO NOT HELP

We consider sequential or active ranking of a set of n items based on noisy pairwise comparisons. Items are ranked according to the probability that a given item beats a randomly chosen item, and ranking refers to partitioning the items into sets of prespecified sizes according to their scores. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2019-12, Vol.47 (6), p.3099-3126
Hauptverfasser: Heckel, Reinhard, Shah, Nihar B., Ramchandran, Kannan, Wainwright, Martin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider sequential or active ranking of a set of n items based on noisy pairwise comparisons. Items are ranked according to the probability that a given item beats a randomly chosen item, and ranking refers to partitioning the items into sets of prespecified sizes according to their scores. This notion of ranking includes as special cases the identification of the top-k items and the total ordering of the items. We first analyze a sequential ranking algorithm that counts the number of comparisons won, and uses these counts to decide whether to stop, or to compare another pair of items, chosen based on confidence intervals specified by the data collected up to that point. We prove that this algorithm succeeds in recovering the ranking using a number of comparisons that is optimal up to logarithmic factors. This guarantee does depend on whether or not the underlying pairwise probability matrix, satisfies a particular structural property, unlike a significant body of past work on pairwise ranking based on parametric models such as the Thurstone or Bradley–Terry–Luce models. It has been a long-standing open question as to whether or not imposing these parametric assumptions allows for improved ranking algorithms. For stochastic comparison models, in which the pairwise probabilities are bounded away from zero, our second contribution is to resolve this issue by proving a lower bound for parametric models. This shows, perhaps surprisingly, that these popular parametric modeling choices offer at most logarithmic gains for stochastic comparisons.
ISSN:0090-5364
2168-8966
DOI:10.1214/18-AOS1772