Modified inherent strain method for efficient prediction of residual deformation in direct metal laser sintered components
It is challenging to predict the residual deformation in the part-scale by performing detailed process simulation for the large part. In this work, the modified inherent strain theory is proposed to enable efficient yet accurate prediction of the residual deformation of large components produced by...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2019-12, Vol.64 (6), p.1719-1733 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is challenging to predict the residual deformation in the part-scale by performing detailed process simulation for the large part. In this work, the modified inherent strain theory is proposed to enable efficient yet accurate prediction of the residual deformation of large components produced by the Direct Metal Laser Sintering process. The proposed theory allows for the calculation of inherent strain accurately based on a small-scale process simulation of a small representative volume. The extracted mean inherent strain vector will be applied to a part-scale model layer-by-layer in order to simulate accumulation of the residual deformation by static finite element analysis. To verify the accuracy of the proposed method, the residual deformation of the double cantilever beam and the complex canonical part after the DMLS process is investigated, and the predicted residual deformation matches well with the experimental results for both large parts while the computational efficiency is also shown. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s00466-019-01748-6 |