Multi-Hop Cooperative Computation Offloading for Industrial IoT-Edge-Cloud Computing Environments

The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2019-12, Vol.30 (12), p.2759-2774
Hauptverfasser: Hong, Zicong, Chen, Wuhui, Huang, Huawei, Guo, Song, Zheng, Zibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of the industrial Internet of things (IIoT) is being widely applied to service provisioning in many domains, including smart healthcare, intelligent transportation, autopilot, and the smart grid. However, because of the IIoT devices' limited onboard resources, supporting resource-intensive applications, such as 3D sensing, navigation, AI processing, and big-data analytics, remains a challenging task. In this paper, we study the multi-hop computation-offloading problem for the IIoT-edge-cloud computing model and adopt a game-theoretic approach to achieving Quality of service (QoS)-aware computation offloading in a distributed manner. First, we study the computation-offloading and communication-routing problems with the goal of minimizing each task's computation time and energy consumption, formulating the joint problem as a potential game in which the IIoT devices determine their computation-offloading strategies. Second, we apply a free-bound mechanism that can ensure a finite improvement path to a Nash equilibrium. Third, we propose a multi-hop cooperative-messaging mechanism and develop two QoS-aware distributed algorithms that can achieve the Nash equilibrium. Our simulation results show that our algorithms offer a stable performance gain for IIoT in various scenarios and scale well as the device size increases.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2019.2926979