Numerical study of a cross flow heat exchanger varying the transverse and longitudinal space to increase heat transfer

In this paper a numerical study of a cross flow heat exchanger varying the transverse and longitudinal space to increase heat transfer is presented. The numerical study consists of varying the transverse and longitudinal space to increase heat transfer to a heat exchanger, which 143 geometries are c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Combinatorial Optimization Problems and Informatics 2020-01, Vol.11 (1), p.106
Hauptverfasser: Reynoso-Jardón, Elva, Urquiza, Gustavo, Tenango-Pirin, Oscar, Mariaca-Beltrán, Yahir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a numerical study of a cross flow heat exchanger varying the transverse and longitudinal space to increase heat transfer is presented. The numerical study consists of varying the transverse and longitudinal space to increase heat transfer to a heat exchanger, which 143 geometries are considered. In addition, each of these geometries are analyzed for 3 materials: stainless steel, copper and titanium. Moreover, a physical model of a heat exchanger is developed and consist of a section of a heat exchanger for simulation purpose. The physical model is solved by the governing equations of the phenomenon in the heat exchanger, that consists in momentum, continuity and energy equations. From the thermal point of view, the most efficient configuration was certified with a copper material with a pressure drop of 200 Pa and values of Xl = 0.024m and Xt = 0.064m. The numerical study is solved by Fluent applied to the physical model of a heat exchanger
ISSN:2007-1558