Unnormalized optimal transport

We propose an extension of the computational fluid mechanics approach to the Monge-Kantorovich mass transfer problem, which was developed by Benamou-Brenier in [4]. Our extension allows optimal transfer of unnormalized and unequal masses. We obtain a one-parameter family of simple modifications of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2019-12, Vol.399, p.108940, Article 108940
Hauptverfasser: Gangbo, Wilfrid, Li, Wuchen, Osher, Stanley, Puthawala, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an extension of the computational fluid mechanics approach to the Monge-Kantorovich mass transfer problem, which was developed by Benamou-Brenier in [4]. Our extension allows optimal transfer of unnormalized and unequal masses. We obtain a one-parameter family of simple modifications of the formulation in [4]. This leads us to a new Monge-Ampére type equation and a new Kantorovich duality formula. These can be solved efficiently by, for example, the Chambolle-Pock primal-dual algorithm [6]. This solution to the extended mass transfer problem gives us a simple metric for computing the distance between two unnormalized densities. The L1 version of this metric was shown in [25] (which is a precursor of our work here) to have desirable properties.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2019.108940