Dense DSM and DTM Point Cloud Generation Using CARTOSAT-2E Satellite Images for High-Resolution Applications

The primary objective of this study is to provide a methodology to generate a dense point cloud of digital surface model (DSM) and digital terrain model (DTM) from 0.6 m GSD stereo images acquired by CARTOSAT-2E satellite of the Indian Space Research Organization. These products are required for man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2019-12, Vol.47 (12), p.2085-2096
Hauptverfasser: Pendyala, V. S. S. N. Gopala Krishna, Kalluri, Hemantha Kumar, Rao, C. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary objective of this study is to provide a methodology to generate a dense point cloud of digital surface model (DSM) and digital terrain model (DTM) from 0.6 m GSD stereo images acquired by CARTOSAT-2E satellite of the Indian Space Research Organization. These products are required for many high-resolution applications such as mapping of watersheds and watercourses; river flood modeling; analysis of flood depth, landslide, forest structure, and individual trees; design of highway and canal alignment. The proposed method consists of several processes such as orienting the stereo images, DEM point cloud extraction using the semi-global matching, and DSM to DTM filtering. The stereo model is built by performing aero triangulation and block adjustment using the ground control points. The semi-global matching algorithm is used on the epipolar images to generate the DSM in the form of dense point cloud corresponding to one height point for each pixel. The planimetric and height accuracies are evaluated using orthoimages and DSM and found to be within 3-pixel (~ 2 m) range. A method for extracting DTM by ground point filtering, to discriminate the probable ground points and the non-ground points, is provided by using discrete cosine transformation interpolation. This robust method uses a weight function to differentiate the noise points from the ground points. The overall classification efficiency kappa ( κ ) value averages at 0.92 for ground point classification/DTM extraction. The results of benchmarking of the GPS-aided GEO augmented navigation GPS receiver by operating it over IGS station, in static mode for collecting the checkpoints, also are presented.
ISSN:0255-660X
0974-3006
DOI:10.1007/s12524-019-01051-0