Glassy dynamics in models of confluent tissue with mitosis and apoptosis

Recent work on particle-based models of tissues has suggested that any finite rate of cell division and cell death is sufficient to fluidize an epithelial tissue. At the same time, experimental evidence has indicated the existence of glassy dynamics in some epithelial layers despite continued cell c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2019-11, Vol.15 (44), p.9133-9149
Hauptverfasser: Czajkowski, Michael, Sussman, Daniel M, Marchetti, M. Cristina, Manning, M. Lisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent work on particle-based models of tissues has suggested that any finite rate of cell division and cell death is sufficient to fluidize an epithelial tissue. At the same time, experimental evidence has indicated the existence of glassy dynamics in some epithelial layers despite continued cell cycling. To address this discrepancy, we quantify the role of cell birth and death on glassy states in confluent tissues using simulations of an active vertex model that includes cell motility, cell division, and cell death. Our simulation data is consistent with a simple ansatz in which the rate of cell-life cycling and the rate of relaxation of the tissue in the absence of cell cycling contribute independently and additively to the overall rate of cell motion. Specifically, we find that a glass-like regime with caging behavior indicated by subdiffusive cell displacements can be achieved in systems with sufficiently low rates of cell cycling. Using a new Active Vertex Model of confluent epithelial tissue, we investigate the effect of cell division and cell death on previously identified glassy dynamics and establish how fast the cell life cycle must be in order to disrupt the observed dynamical signatures of glass-like behavior.
ISSN:1744-683X
1744-6848
DOI:10.1039/c9sm00916g