Estimating the smoothing parameter in generalized spline-based regression

SummarySmoothing with splines requires a smoothing parameter which is most often obtained by cross-validation. Interpreting splines from a Bayesian point of view this is an empirical Bayesian approach. A fully Bayesian approach with a (hyper-) prior for the smoothing parameter is computationally mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2001-03, Vol.16 (1), p.73-95
1. Verfasser: van der Linde, Angelika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SummarySmoothing with splines requires a smoothing parameter which is most often obtained by cross-validation. Interpreting splines from a Bayesian point of view this is an empirical Bayesian approach. A fully Bayesian approach with a (hyper-) prior for the smoothing parameter is computationally more demanding even for Gaussian data and really accessible only using simulation methods. Smoothing in generalized regression models is presented in a Bayesian interpretation and tried with Gaussian and binary data using the implementation of Gibbs sampling in BUGS. The results are compared to those obtained by cross-validation. The approach essentially does work but convergence of just the smoothing parameter turns out to be crucial. The sensitivity of the estimated function values w.r.t. to the prior is satisfactory.
ISSN:0943-4062
1613-9658
DOI:10.1007/s001800100052