Robust Quantum Entanglement at (nearly) Room Temperature

We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approximated by shallow quantum circuits. We then prove thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
1. Verfasser: Eldar, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Eldar, Lior
description We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approximated by shallow quantum circuits. We then prove this conjecture holds for nearly optimal parameters: when the "inverse temperature" is almost a constant (temperature decays as 1/loglog(n))) and the Hamiltonian is nearly local (log(n)-local). The construction and proof combine quantum codes that arise from high-dimensional manifolds [Has17, LLZ19], the local-decoding approach to quantum codes [LTZ15, FGL18] and quantum locally-testable codes [AE15].
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2313801719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313801719</sourcerecordid><originalsourceid>FETCH-proquest_journals_23138017193</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xw0aGQH2vrLBVXS_cS4SqU5KYmN4Nvr4MP4HSG7yxEoY1RVXvQeiXKlCYppT42uq5NIdo-3HNiuGVLnD10xJaeDj0Sg2XYEdro3nvoQ_AwoJ8xWs4RN2L5sC5h-etabC_dcL5WcwyvjInHKeRIXxq1UaaVqlEn89_1ATiQNes</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313801719</pqid></control><display><type>article</type><title>Robust Quantum Entanglement at (nearly) Room Temperature</title><source>Free E- Journals</source><creator>Eldar, Lior</creator><creatorcontrib>Eldar, Lior</creatorcontrib><description>We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approximated by shallow quantum circuits. We then prove this conjecture holds for nearly optimal parameters: when the "inverse temperature" is almost a constant (temperature decays as 1/loglog(n))) and the Hamiltonian is nearly local (log(n)-local). The construction and proof combine quantum codes that arise from high-dimensional manifolds [Has17, LLZ19], the local-decoding approach to quantum codes [LTZ15, FGL18] and quantum locally-testable codes [AE15].</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decoding ; Hamiltonian functions ; Quantum entanglement ; Quantum mechanics ; Room temperature</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Eldar, Lior</creatorcontrib><title>Robust Quantum Entanglement at (nearly) Room Temperature</title><title>arXiv.org</title><description>We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approximated by shallow quantum circuits. We then prove this conjecture holds for nearly optimal parameters: when the "inverse temperature" is almost a constant (temperature decays as 1/loglog(n))) and the Hamiltonian is nearly local (log(n)-local). The construction and proof combine quantum codes that arise from high-dimensional manifolds [Has17, LLZ19], the local-decoding approach to quantum codes [LTZ15, FGL18] and quantum locally-testable codes [AE15].</description><subject>Decoding</subject><subject>Hamiltonian functions</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Room temperature</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xw0aGQH2vrLBVXS_cS4SqU5KYmN4Nvr4MP4HSG7yxEoY1RVXvQeiXKlCYppT42uq5NIdo-3HNiuGVLnD10xJaeDj0Sg2XYEdro3nvoQ_AwoJ8xWs4RN2L5sC5h-etabC_dcL5WcwyvjInHKeRIXxq1UaaVqlEn89_1ATiQNes</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Eldar, Lior</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200908</creationdate><title>Robust Quantum Entanglement at (nearly) Room Temperature</title><author>Eldar, Lior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23138017193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Decoding</topic><topic>Hamiltonian functions</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Room temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Eldar, Lior</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eldar, Lior</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Robust Quantum Entanglement at (nearly) Room Temperature</atitle><jtitle>arXiv.org</jtitle><date>2020-09-08</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approximated by shallow quantum circuits. We then prove this conjecture holds for nearly optimal parameters: when the "inverse temperature" is almost a constant (temperature decays as 1/loglog(n))) and the Hamiltonian is nearly local (log(n)-local). The construction and proof combine quantum codes that arise from high-dimensional manifolds [Has17, LLZ19], the local-decoding approach to quantum codes [LTZ15, FGL18] and quantum locally-testable codes [AE15].</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2313801719
source Free E- Journals
subjects Decoding
Hamiltonian functions
Quantum entanglement
Quantum mechanics
Room temperature
title Robust Quantum Entanglement at (nearly) Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Robust%20Quantum%20Entanglement%20at%20(nearly)%20Room%20Temperature&rft.jtitle=arXiv.org&rft.au=Eldar,%20Lior&rft.date=2020-09-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2313801719%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313801719&rft_id=info:pmid/&rfr_iscdi=true