Robust Quantum Entanglement at (nearly) Room Temperature

We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approximated by shallow quantum circuits. We then prove thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
1. Verfasser: Eldar, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approximated by shallow quantum circuits. We then prove this conjecture holds for nearly optimal parameters: when the "inverse temperature" is almost a constant (temperature decays as 1/loglog(n))) and the Hamiltonian is nearly local (log(n)-local). The construction and proof combine quantum codes that arise from high-dimensional manifolds [Has17, LLZ19], the local-decoding approach to quantum codes [LTZ15, FGL18] and quantum locally-testable codes [AE15].
ISSN:2331-8422