Optimal Morse–Smale Flows with Singularities on the Boundary of a Surface
We consider the optimal flows on noncompact surfaces with boundary, which have a minimum number of fixed points and all these points lie on the boundary of the surface. It is proved that the flow is optimal if it has a single sink and a single source. We describe the structures of the optimal flows...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-11, Vol.243 (2), p.279-286 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the optimal flows on noncompact surfaces with boundary, which have a minimum number of fixed points and all these points lie on the boundary of the surface. It is proved that the flow is optimal if it has a single sink and a single source. We describe the structures of the optimal flows on a simply connected region, on a Möbius strip, on a torus with hole, and on a Klein bottle with hole. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-019-04539-9 |