RF-Driven Crowd-Size Classif i cation via Machine Learning

In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postproce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2019-01, Vol.18 (11), p.2321
Hauptverfasser: Tarciana Cabral de Brito Guerra, Maia de Santana, Pedro, Millena Michely de Medeiros Campos, Mateus de Oliveira Mattos, Alvaro A M de Medeiros, de Sousa, Vicente Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2321
container_title IEEE antennas and wireless propagation letters
container_volume 18
creator Tarciana Cabral de Brito Guerra
Maia de Santana, Pedro
Millena Michely de Medeiros Campos
Mateus de Oliveira Mattos
Alvaro A M de Medeiros
de Sousa, Vicente Angelo
description In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postprocessed by applying a feature mapping along with the random forest technique for classifying the crowd-size scenarios. The proposed solution has significant accuracy in classification performance.
doi_str_mv 10.1109/LAWP.2019.2932076
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2313665085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313665085</sourcerecordid><originalsourceid>FETCH-proquest_journals_23136650853</originalsourceid><addsrcrecordid>eNqNik0LgjAAQEcUZB8_oNug82wfbWq3sKSDQVTQUYbNWsisTQ369RX0Azq9B-8BMCHYJwRHs3R52vkUk8inEaM4EB3gET4PEQ940P06E4hQyvtg4NwNYxIIzjyw2CdoZXWrDIxt9Tyjg34pGJfSOV1ADXNZ68rAVku4lflVGwVTJa3R5jICvUKWTo1_HIJpsj7GG3S31aNRrs5uVWPNJ2WUESYExyFn_11vau48Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313665085</pqid></control><display><type>article</type><title>RF-Driven Crowd-Size Classif i cation via Machine Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Tarciana Cabral de Brito Guerra ; Maia de Santana, Pedro ; Millena Michely de Medeiros Campos ; Mateus de Oliveira Mattos ; Alvaro A M de Medeiros ; de Sousa, Vicente Angelo</creator><creatorcontrib>Tarciana Cabral de Brito Guerra ; Maia de Santana, Pedro ; Millena Michely de Medeiros Campos ; Mateus de Oliveira Mattos ; Alvaro A M de Medeiros ; de Sousa, Vicente Angelo</creatorcontrib><description>In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postprocessed by applying a feature mapping along with the random forest technique for classifying the crowd-size scenarios. The proposed solution has significant accuracy in classification performance.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2019.2932076</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Artificial intelligence ; Classification ; Indoor environments ; Machine learning ; Mapping ; Radio signals ; Software radio</subject><ispartof>IEEE antennas and wireless propagation letters, 2019-01, Vol.18 (11), p.2321</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tarciana Cabral de Brito Guerra</creatorcontrib><creatorcontrib>Maia de Santana, Pedro</creatorcontrib><creatorcontrib>Millena Michely de Medeiros Campos</creatorcontrib><creatorcontrib>Mateus de Oliveira Mattos</creatorcontrib><creatorcontrib>Alvaro A M de Medeiros</creatorcontrib><creatorcontrib>de Sousa, Vicente Angelo</creatorcontrib><title>RF-Driven Crowd-Size Classif i cation via Machine Learning</title><title>IEEE antennas and wireless propagation letters</title><description>In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postprocessed by applying a feature mapping along with the random forest technique for classifying the crowd-size scenarios. The proposed solution has significant accuracy in classification performance.</description><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Indoor environments</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Radio signals</subject><subject>Software radio</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNik0LgjAAQEcUZB8_oNug82wfbWq3sKSDQVTQUYbNWsisTQ369RX0Azq9B-8BMCHYJwRHs3R52vkUk8inEaM4EB3gET4PEQ940P06E4hQyvtg4NwNYxIIzjyw2CdoZXWrDIxt9Tyjg34pGJfSOV1ADXNZ68rAVku4lflVGwVTJa3R5jICvUKWTo1_HIJpsj7GG3S31aNRrs5uVWPNJ2WUESYExyFn_11vau48Zg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Tarciana Cabral de Brito Guerra</creator><creator>Maia de Santana, Pedro</creator><creator>Millena Michely de Medeiros Campos</creator><creator>Mateus de Oliveira Mattos</creator><creator>Alvaro A M de Medeiros</creator><creator>de Sousa, Vicente Angelo</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20190101</creationdate><title>RF-Driven Crowd-Size Classif i cation via Machine Learning</title><author>Tarciana Cabral de Brito Guerra ; Maia de Santana, Pedro ; Millena Michely de Medeiros Campos ; Mateus de Oliveira Mattos ; Alvaro A M de Medeiros ; de Sousa, Vicente Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23136650853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Indoor environments</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Radio signals</topic><topic>Software radio</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarciana Cabral de Brito Guerra</creatorcontrib><creatorcontrib>Maia de Santana, Pedro</creatorcontrib><creatorcontrib>Millena Michely de Medeiros Campos</creatorcontrib><creatorcontrib>Mateus de Oliveira Mattos</creatorcontrib><creatorcontrib>Alvaro A M de Medeiros</creatorcontrib><creatorcontrib>de Sousa, Vicente Angelo</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarciana Cabral de Brito Guerra</au><au>Maia de Santana, Pedro</au><au>Millena Michely de Medeiros Campos</au><au>Mateus de Oliveira Mattos</au><au>Alvaro A M de Medeiros</au><au>de Sousa, Vicente Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RF-Driven Crowd-Size Classif i cation via Machine Learning</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>18</volume><issue>11</issue><spage>2321</spage><pages>2321-</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><abstract>In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postprocessed by applying a feature mapping along with the random forest technique for classifying the crowd-size scenarios. The proposed solution has significant accuracy in classification performance.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/LAWP.2019.2932076</doi></addata></record>
fulltext fulltext
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2019-01, Vol.18 (11), p.2321
issn 1536-1225
1548-5757
language eng
recordid cdi_proquest_journals_2313665085
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Classification
Indoor environments
Machine learning
Mapping
Radio signals
Software radio
title RF-Driven Crowd-Size Classif i cation via Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RF-Driven%20Crowd-Size%20Classif%20i%20cation%20via%20Machine%20Learning&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Tarciana%20Cabral%20de%20Brito%20Guerra&rft.date=2019-01-01&rft.volume=18&rft.issue=11&rft.spage=2321&rft.pages=2321-&rft.issn=1536-1225&rft.eissn=1548-5757&rft_id=info:doi/10.1109/LAWP.2019.2932076&rft_dat=%3Cproquest%3E2313665085%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313665085&rft_id=info:pmid/&rfr_iscdi=true