RF-Driven Crowd-Size Classif i cation via Machine Learning

In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postproce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2019-01, Vol.18 (11), p.2321
Hauptverfasser: Tarciana Cabral de Brito Guerra, Maia de Santana, Pedro, Millena Michely de Medeiros Campos, Mateus de Oliveira Mattos, Alvaro A M de Medeiros, de Sousa, Vicente Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postprocessed by applying a feature mapping along with the random forest technique for classifying the crowd-size scenarios. The proposed solution has significant accuracy in classification performance.
ISSN:1536-1225
1548-5757
DOI:10.1109/LAWP.2019.2932076