RF-Driven Crowd-Size Classif i cation via Machine Learning
In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postproce...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2019-01, Vol.18 (11), p.2321 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postprocessed by applying a feature mapping along with the random forest technique for classifying the crowd-size scenarios. The proposed solution has significant accuracy in classification performance. |
---|---|
ISSN: | 1536-1225 1548-5757 |
DOI: | 10.1109/LAWP.2019.2932076 |