A joint quantile regression model for multiple longitudinal outcomes

Complexity of longitudinal data lies in the inherent dependence among measurements from same subject over different time points. For multiple longitudinal responses, the problem is challenging due to inter-trait and intra-trait dependence. While linear mixed models are popularly used for analysing s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in statistical analysis : AStA : a journal of the German Statistical Society 2019-12, Vol.103 (4), p.453-473
Hauptverfasser: Kulkarni, Hemant, Biswas, Jayabrata, Das, Kiranmoy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complexity of longitudinal data lies in the inherent dependence among measurements from same subject over different time points. For multiple longitudinal responses, the problem is challenging due to inter-trait and intra-trait dependence. While linear mixed models are popularly used for analysing such data, appropriate inference on the shape of the population cannot be drawn for non-normal data sets. We propose a linear mixed model for joint quantile regression of multiple longitudinal responses. We consider an asymmetric Laplace distribution for quantile regression and estimate model parameters by Monte Carlo EM algorithm. Nonparametric bootstrap resampling method is used for estimating confidence intervals of parameter estimates. Through extensive simulation studies, we investigate the operating characteristics of our proposed model and compare the performance to other traditional quantile regression models. We apply proposed model for analysing data from nutrition education programme on hypercholesterolemic children of the USA.
ISSN:1863-8171
1863-818X
DOI:10.1007/s10182-018-00339-9