The role of algebraic structure in the invariant subspace theory

Following a recent work of authors [1], we establish the algebraic analogs of three major decomposition theorems of Nagy-Foias-Langer, Halmos-Wallen and Fishel in Baer ⁎-rings. This approach not only provides purely algebraic and shorter proofs of these decomposition theorems, but also suggests the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-12, Vol.583, p.102-118
Hauptverfasser: Bagheri-Bardi, G.A., Elyaspour, A., Esslamzadeh, G.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following a recent work of authors [1], we establish the algebraic analogs of three major decomposition theorems of Nagy-Foias-Langer, Halmos-Wallen and Fishel in Baer ⁎-rings. This approach not only provides purely algebraic and shorter proofs of these decomposition theorems, but also suggests the possibility of eliminating the role of analytic structure in results related to the invariant subspace theory.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2019.08.022