The role of algebraic structure in the invariant subspace theory
Following a recent work of authors [1], we establish the algebraic analogs of three major decomposition theorems of Nagy-Foias-Langer, Halmos-Wallen and Fishel in Baer ⁎-rings. This approach not only provides purely algebraic and shorter proofs of these decomposition theorems, but also suggests the...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2019-12, Vol.583, p.102-118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following a recent work of authors [1], we establish the algebraic analogs of three major decomposition theorems of Nagy-Foias-Langer, Halmos-Wallen and Fishel in Baer ⁎-rings. This approach not only provides purely algebraic and shorter proofs of these decomposition theorems, but also suggests the possibility of eliminating the role of analytic structure in results related to the invariant subspace theory. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2019.08.022 |