Periodic Cauchy problem for one two-dimensional generalization of the Benjamin–Ono equation in Sobolev spaces of low regularity
In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation ut+HΔu+uux=0,(x,y)∈T2,t∈R,u(x,y,0)=u0(x,y), where H denotes the Hilbert transform with respect to the variable x and Δ is the Laplacian with respect to the spatial variables x and y, is...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2019-11, Vol.188, p.50-69 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | |
container_start_page | 50 |
container_title | Nonlinear analysis |
container_volume | 188 |
creator | Bustamante, Eddye Jiménez Urrea, José Mejía, Jorge |
description | In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation ut+HΔu+uux=0,(x,y)∈T2,t∈R,u(x,y,0)=u0(x,y), where H denotes the Hilbert transform with respect to the variable x and Δ is the Laplacian with respect to the spatial variables x and y, is locally well-posed in the periodic Sobolev space Hs(T2), with s>7∕4. |
doi_str_mv | 10.1016/j.na.2019.05.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313339303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X1930166X</els_id><sourcerecordid>2313339303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-ebb1b1aa15d2ff295da98dd404caefb32ee2780847530d61248592ec78b4aafc3</originalsourceid><addsrcrecordid>eNp1kM1q3DAUhUVpoNNJ910KsrajH8s_3aVDkxYCE0gC3Ylr6TqR8UgTyZ4wWSXP0Dfsk8TDdNvVhXPPd7nnEPKVs5wzXp73uYdcMN7kTOWMFx_IgteVzJTg6iNZMFmKTBXl70_kc0o9Y4xXslyQtxuMLlhn6Aom87in2xjaATe0C5EGj3R8Dpl1G_TJBQ8DfUCPEQb3AuMs0NDR8RHpd_Q9bJz_-_pn7QPFp-m4dp7ehjYMuKNpCwbTARjCM434MA0Q3bg_JScdDAm__JtLcn_54271M7teX_1aXVxnRgoxZti2vOUAXFnRdaJRFpra2oIVBrBrpUAUVc3qolKS2ZKLolaNQFPVbQHQGbkkZ8e7c8KnCdOo-zDFOVLSQnIpZSOZnF3s6DIxpBSx09voNhD3mjN9KFr32oM-FK2Z0nPRM_LtiOD8_c5h1Mk49Aati2hGbYP7P_wOzNyI5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313339303</pqid></control><display><type>article</type><title>Periodic Cauchy problem for one two-dimensional generalization of the Benjamin–Ono equation in Sobolev spaces of low regularity</title><source>Elsevier ScienceDirect Journals</source><creator>Bustamante, Eddye ; Jiménez Urrea, José ; Mejía, Jorge</creator><creatorcontrib>Bustamante, Eddye ; Jiménez Urrea, José ; Mejía, Jorge</creatorcontrib><description>In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation ut+HΔu+uux=0,(x,y)∈T2,t∈R,u(x,y,0)=u0(x,y), where H denotes the Hilbert transform with respect to the variable x and Δ is the Laplacian with respect to the spatial variables x and y, is locally well-posed in the periodic Sobolev space Hs(T2), with s>7∕4.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2019.05.014</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Benjamin–Ono equation ; Boundary value problems ; Cauchy problems ; Hilbert transformation ; Sobolev space ; Sobolev spaces ; Well posed problems ; Well-posedness</subject><ispartof>Nonlinear analysis, 2019-11, Vol.188, p.50-69</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-ebb1b1aa15d2ff295da98dd404caefb32ee2780847530d61248592ec78b4aafc3</citedby><cites>FETCH-LOGICAL-c322t-ebb1b1aa15d2ff295da98dd404caefb32ee2780847530d61248592ec78b4aafc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X1930166X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Bustamante, Eddye</creatorcontrib><creatorcontrib>Jiménez Urrea, José</creatorcontrib><creatorcontrib>Mejía, Jorge</creatorcontrib><title>Periodic Cauchy problem for one two-dimensional generalization of the Benjamin–Ono equation in Sobolev spaces of low regularity</title><title>Nonlinear analysis</title><description>In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation ut+HΔu+uux=0,(x,y)∈T2,t∈R,u(x,y,0)=u0(x,y), where H denotes the Hilbert transform with respect to the variable x and Δ is the Laplacian with respect to the spatial variables x and y, is locally well-posed in the periodic Sobolev space Hs(T2), with s>7∕4.</description><subject>Benjamin–Ono equation</subject><subject>Boundary value problems</subject><subject>Cauchy problems</subject><subject>Hilbert transformation</subject><subject>Sobolev space</subject><subject>Sobolev spaces</subject><subject>Well posed problems</subject><subject>Well-posedness</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1q3DAUhUVpoNNJ910KsrajH8s_3aVDkxYCE0gC3Ylr6TqR8UgTyZ4wWSXP0Dfsk8TDdNvVhXPPd7nnEPKVs5wzXp73uYdcMN7kTOWMFx_IgteVzJTg6iNZMFmKTBXl70_kc0o9Y4xXslyQtxuMLlhn6Aom87in2xjaATe0C5EGj3R8Dpl1G_TJBQ8DfUCPEQb3AuMs0NDR8RHpd_Q9bJz_-_pn7QPFp-m4dp7ehjYMuKNpCwbTARjCM434MA0Q3bg_JScdDAm__JtLcn_54271M7teX_1aXVxnRgoxZti2vOUAXFnRdaJRFpra2oIVBrBrpUAUVc3qolKS2ZKLolaNQFPVbQHQGbkkZ8e7c8KnCdOo-zDFOVLSQnIpZSOZnF3s6DIxpBSx09voNhD3mjN9KFr32oM-FK2Z0nPRM_LtiOD8_c5h1Mk49Aati2hGbYP7P_wOzNyI5g</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Bustamante, Eddye</creator><creator>Jiménez Urrea, José</creator><creator>Mejía, Jorge</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201911</creationdate><title>Periodic Cauchy problem for one two-dimensional generalization of the Benjamin–Ono equation in Sobolev spaces of low regularity</title><author>Bustamante, Eddye ; Jiménez Urrea, José ; Mejía, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-ebb1b1aa15d2ff295da98dd404caefb32ee2780847530d61248592ec78b4aafc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benjamin–Ono equation</topic><topic>Boundary value problems</topic><topic>Cauchy problems</topic><topic>Hilbert transformation</topic><topic>Sobolev space</topic><topic>Sobolev spaces</topic><topic>Well posed problems</topic><topic>Well-posedness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bustamante, Eddye</creatorcontrib><creatorcontrib>Jiménez Urrea, José</creatorcontrib><creatorcontrib>Mejía, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bustamante, Eddye</au><au>Jiménez Urrea, José</au><au>Mejía, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Cauchy problem for one two-dimensional generalization of the Benjamin–Ono equation in Sobolev spaces of low regularity</atitle><jtitle>Nonlinear analysis</jtitle><date>2019-11</date><risdate>2019</risdate><volume>188</volume><spage>50</spage><epage>69</epage><pages>50-69</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation ut+HΔu+uux=0,(x,y)∈T2,t∈R,u(x,y,0)=u0(x,y), where H denotes the Hilbert transform with respect to the variable x and Δ is the Laplacian with respect to the spatial variables x and y, is locally well-posed in the periodic Sobolev space Hs(T2), with s>7∕4.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2019.05.014</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2019-11, Vol.188, p.50-69 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_journals_2313339303 |
source | Elsevier ScienceDirect Journals |
subjects | Benjamin–Ono equation Boundary value problems Cauchy problems Hilbert transformation Sobolev space Sobolev spaces Well posed problems Well-posedness |
title | Periodic Cauchy problem for one two-dimensional generalization of the Benjamin–Ono equation in Sobolev spaces of low regularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Cauchy%20problem%20for%20one%20two-dimensional%20generalization%20of%20the%20Benjamin%E2%80%93Ono%20equation%20in%20Sobolev%20spaces%20of%20low%20regularity&rft.jtitle=Nonlinear%20analysis&rft.au=Bustamante,%20Eddye&rft.date=2019-11&rft.volume=188&rft.spage=50&rft.epage=69&rft.pages=50-69&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2019.05.014&rft_dat=%3Cproquest_cross%3E2313339303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313339303&rft_id=info:pmid/&rft_els_id=S0362546X1930166X&rfr_iscdi=true |