Periodic Cauchy problem for one two-dimensional generalization of the Benjamin–Ono equation in Sobolev spaces of low regularity

In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation ut+HΔu+uux=0,(x,y)∈T2,t∈R,u(x,y,0)=u0(x,y), where H denotes the Hilbert transform with respect to the variable x and Δ is the Laplacian with respect to the spatial variables x and y, is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2019-11, Vol.188, p.50-69
Hauptverfasser: Bustamante, Eddye, Jiménez Urrea, José, Mejía, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation ut+HΔu+uux=0,(x,y)∈T2,t∈R,u(x,y,0)=u0(x,y), where H denotes the Hilbert transform with respect to the variable x and Δ is the Laplacian with respect to the spatial variables x and y, is locally well-posed in the periodic Sobolev space Hs(T2), with s>7∕4.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2019.05.014