Periodic Cauchy problem for one two-dimensional generalization of the Benjamin–Ono equation in Sobolev spaces of low regularity
In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation ut+HΔu+uux=0,(x,y)∈T2,t∈R,u(x,y,0)=u0(x,y), where H denotes the Hilbert transform with respect to the variable x and Δ is the Laplacian with respect to the spatial variables x and y, is...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2019-11, Vol.188, p.50-69 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation ut+HΔu+uux=0,(x,y)∈T2,t∈R,u(x,y,0)=u0(x,y), where H denotes the Hilbert transform with respect to the variable x and Δ is the Laplacian with respect to the spatial variables x and y, is locally well-posed in the periodic Sobolev space Hs(T2), with s>7∕4. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2019.05.014 |