Modeling of ATC Operation Process based on Extended Colored Petri Net

As a highly complex social and technological system, the air traffic management (ATM) system of next generation (NextGen) has many new technologies. With more and more changing roles of human beings (such as pilots and controllers) in the ATM system, new potential hazards may emerge. This paper prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of performability engineering 2019, Vol.15 (9), p.2522
Hauptverfasser: Jiuxia, Guo, Shuzhi, Sam Ge, Xinping, Zhu, Fangfang, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a highly complex social and technological system, the air traffic management (ATM) system of next generation (NextGen) has many new technologies. With more and more changing roles of human beings (such as pilots and controllers) in the ATM system, new potential hazards may emerge. This paper proposes a new safety analysis method using coloured Petri nets (CPN), which alleviates the unsafe interactions between non-fault components. From the control operation point of view, there are some fixed aerodrome control operation units, which can be divided into two typical modules: Tower control position module and General control position module. According to the basic net model, we present a modelling method based on extended colored Petri net (ECPN) to simulate the air traffic control (ATC) operation process. The focus in this paper is on the constructs of the ATC operation process, including the development of a fine model and substitution rule. The model development is supported by a set of model constructs, which represent key aspects of the ATC operation process. The top-level network model of the ATC operation process using the cognitive work analysis (CWA) method is built. The approach is presented for the multi-runway airport control operation process and describes in detail the Petri net model of the tower control process. Finally, we simulate the tower control process by CPN Tools. The availability of the ATC operation control models are verified by generating the full state space and state space report.
ISSN:0973-1318
DOI:10.23940/ijpe.19.09.p26.25222533