Evaluation of corrugated cardboard biochar as reinforcing fiber on properties, biodegradability and weatherability of wood-plastic composites
Corrugated cardboard (CCB) was pyrolyzed at different temperatures (350, 400 and 450 °C) to produce biochar fibers. The biochar and CCB control fibers were then compounded with high density polyethylene (HDPE) and maleated polyethylene (MAPE) to prepare wood plastic composites (WPC). The effect of d...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2019-10, Vol.168, p.108955, Article 108955 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Corrugated cardboard (CCB) was pyrolyzed at different temperatures (350, 400 and 450 °C) to produce biochar fibers. The biochar and CCB control fibers were then compounded with high density polyethylene (HDPE) and maleated polyethylene (MAPE) to prepare wood plastic composites (WPC). The effect of different pyrolysis temperature biochars on the WPC's mechanical, thermal and viscoelastic properties, water absorptions, rheological behavior, weatherability and biodurability performance were evaluated. The CCB composite melts showed higher modulus and viscosity than biochar composites, indicating better melt strength. Compared with CCB composites, an increase of tensile strength (4%) and tensile modulus (30%) could be observed in composites made from CCB 350 °C biochar. In addition, the CCB biochar composite showed lower tan δ and adhesion factor, indicating the strong interfacial interaction between biochar fibers and HDPE. The composite melting temperatures (Tm) were not significantly different. The degree of HDPE crystallinity in the biochar composites decreased relative to the CCB composites, while the thermal properties of the composites improved compared with CCB composites. The CCB composite displayed the highest water absorption (3.9%) and thickness swell (3.8%) after 70 d. The CCB biochar (450 °C) composite experienced the least color change, lightless and carbonyl concentrations due to weathering. Pyrolysis of CCB reduced weight loss in the resulting composites exposed to fungi compared with the CCB composite. Using CCB biochar led to a more biodurable WPC.
•This study compared cardboard and cardboard biochar fibers for use in HDPE composites.•Biochar fibers improved composite mechanical properties, dimensional stability, photostability and biodurable properties.•CCB350 composite showed the best mechanical properties.•CCB400 composite showed the best dimensional stability.•CCB450 composite showed the best photostability and biodurability against fungal attack. |
---|---|
ISSN: | 0141-3910 1873-2321 |
DOI: | 10.1016/j.polymdegradstab.2019.108955 |