PATHWISE CONVERGENCE OF THE HARD SPHERES KAC PROCESS

We derive two estimates for the deviation of the N-particle, hard-spheres Kac process from the corresponding Boltzmann equation, measured in expected Wasserstein distance. Particular care is paid to the long-time properties of our estimates, exploiting the stability properties of the limiting Boltzm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2019-10, Vol.29 (5), p.3062-3127
1. Verfasser: Heydecker, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive two estimates for the deviation of the N-particle, hard-spheres Kac process from the corresponding Boltzmann equation, measured in expected Wasserstein distance. Particular care is paid to the long-time properties of our estimates, exploiting the stability properties of the limiting Boltzmann equation at the level of realisations of the interacting particle system. As a consequence, we obtain an estimate for the propagation of chaos, uniformly in time and with polynomial rates, as soon as the initial data has a kth moment, k >2. Our approach is similar to Kac’s proposal of relating the long-time behaviour of the particle system to that of the limit equation. Along the way, we prove a new estimate for the continuity of the Boltzmann flow measured in Wasserstein distance.
ISSN:1050-5164
2168-8737
DOI:10.1214/19-AAP1475