Chaotic signatures of photoconductive Cu2ZnSnS4 nanostructures explored by Lorenz attractors

Photoconductive and third-order nonlinear optical properties exhibited by Cu2ZnSnS4 nanostructures are presented. The samples were synthetized in thin film form by a spray pyrolysis processing route. Distinctions in the photoconductive behavior throughout the samples were clearly noted by modulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2018-02, Vol.20 (2), p.023048
Hauptverfasser: Hernández-Acosta, M A, Trejo-Valdez, M, Castro-Chacón, J H, Torres-San Miguel, C R, Martínez-Gutiérrez, H, Torres-Torres, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoconductive and third-order nonlinear optical properties exhibited by Cu2ZnSnS4 nanostructures are presented. The samples were synthetized in thin film form by a spray pyrolysis processing route. Distinctions in the photoconductive behavior throughout the samples were clearly noted by modulating their optoelectronic response dependent on electrical frequency. Vectorial two-wave mixing experiments were carried out at a 532 nm wavelength provided by a Nd:YAG laser system to study the optical nonlinearities in the samples. An induced transparency effect was observed during nanosecond single-beam experiments in the nanostructures reported. Quantum and thermal processes were considered to be the main physical mechanism responsible for the photo-electrical phenomena and nonlinear refraction in the nanostructures. Potential applications for developing nanophotonic and nanoelectronic instrumentation systems can be contemplated.
ISSN:1367-2630
DOI:10.1088/1367-2630/aaad41