A Jordan canonical form for nilpotent elements in an arbitrary ring
In this paper we give an inductive new proof of the Jordan canonical form of a nilpotent element in an arbitrary ring. If a∈R is a nilpotent element of index n with von Neumann regular an−1, we decompose a=ea+(1−e)a with ea∈eRe≅Mn(S) a Jordan block of size n over a corner S of R, and (1−e)a nilpoten...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2019-11, Vol.581, p.324-335 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we give an inductive new proof of the Jordan canonical form of a nilpotent element in an arbitrary ring. If a∈R is a nilpotent element of index n with von Neumann regular an−1, we decompose a=ea+(1−e)a with ea∈eRe≅Mn(S) a Jordan block of size n over a corner S of R, and (1−e)a nilpotent of index |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2019.07.016 |